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Abstract

Investigating fluid behavior in nanoporous materials is essential for gas storage, separation, and catalysis applications.
Here, we present a comparison of two computational methods for fluid—structure analysis in amorphous nanoporous carbon
materials: three-dimensional (3D) classical density functional theory (cDFT) and grand canonical Monte Carlo (GCMC)
simulations. We extended our recent development of 3D-cDFT to allow density-profile analysis without symmetry assump-
tions, enhancing its applicability to a broader range of porous materials. We provide a theoretical overview and discuss the
advantages and limitations of each method. Our results highlight the accuracy of both 3D-cDFT and GCMC simulations
while emphasizing differences in computational cost, precision, and scope. We also explore the impact of the non-crystalline
structure of amorphous carbon nanopores on fluid structure and adsorption isotherms, as well as fluid—fluid and fluid-solid
interactions. We offer insights for selecting computational methods in fluid structure analysis of nanoporous materials, guid-

ing future research and optimization in advanced material development for diverse applications.
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1 Introduction

Due to their excellent surface activity [20], nanoporous
carbonaceous materials, including activated carbons, car-
bon fibers, and carbon molecular sieves, are widely used
in various industrial applications such as mixture separa-
tions [50], water purification [2], CO, capture [36, 68, 79],
electrodes [42, 52, 85], hydrogen [32] and natural gas stor-
age [16]. Achieving success in these applications relies heav-
ily on developing and characterizing nanoporous carbons.
In recent years, molecular simulations and classical den-
sity functional theory (cDFT) calculations have provided
insights into the behavior of gases and fluids within these
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carbon materials. Since the seminal work of [72], much of
this work has focused on one-dimensional (1D) nanopore
geometries, offering a simplified yet informative perspec-
tive on the adsorption and transport phenomena within this
nanoporous structures [81, 82]. These methodologies have
proven effective in capturing the essential physics of adsorp-
tion and have provided a platform for predicting material
performance under various conditions.

However, real-world nanoporous carbon materials often
exhibit three-dimensional (3D) geometries with no inher-
ent symmetry, which presents a more complex scenario.
Unlike crystalline solids, such as zeolites [22, 33, 34, 75]
and metal-organic frameworks (MOFs) [15, 59], with
regular and well-defined structures, nanoporous carbons
consist of disordered graphitic domains. This amorphous
structure results in highly convoluted internal surfaces and
pores of diverse shapes and sizes, creating a disordered 3D
pore network. The accuracy of 1D models in accounting for
adsorption is insufficient, mainly when predicting the heat of
adsorption and diffusion in these materials [8]. In this sense,
extracting atomically detailed structures from amorphous
materials presents a challenge. Creating realistic structural
models is crucial for characterizing the pore structure and
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predicting the adsorption of different gases and their mix-
tures across many thermodynamic conditions.

In recent work, [9] used molecular models of nanoporous
carbons for pore structure characterization and simulations
of the adsorption of simple fluids and hydrocarbons using
GCMC, demonstrating the advantages and capabilities of
using 3D models. There are two methods based on molecular
simulation for generating molecular models of nanoporous
carbons: hybrid reverse Monte Carlo (HRMC) and molecu-
lar dynamics (MD). HRMC combines the features of the
Monte Carlo (MC) and Reverse Monte Carlo (RMC) [41]
methods in order to reproduce the experimental pair dis-
tribution function of the material of interest [27]. Different
approaches use MD, such as Quench Molecular Dynamics
(QMD) [47, 48] and Annealed MD (AMD) [12, 13]. Using
AMD simulations, [80] generated a database of 3D carbon
structures, encompassing a wide range of pore sizes and
geometries, and calculated adsorption isotherms via GCMC.
Through this kernel, the authors were able to find the relative
contributions of each of these structures in experimentally
measured isotherms and to estimate the surface area and
pore size distribution.

The cDFT is a theoretical framework that describes the
spatial distribution of fluid molecules inside a porous mate-
rial based on the minimization of a free energy functional
of the density field. Previous research within this field has
focused primarily on symmetrical geometries to describe the
adsorption of gases within nanoporous carbon materials [3,
53, 55, 56, 62, 63, 66]. This approach, while useful in certain
contexts, may not fully capture the complexity and diversity
of real-world scenarios, given the inherently disordered and
asymmetrical nature of nanoporous carbon structures. The
unique characteristics of these materials, including their var-
ied pore sizes and shapes, and the tortuous pathways within,
necessitate a more nuanced approach for accurate represen-
tation and prediction of gas adsorption behavior.

[54] proposed the Quenched Solid Density Functional
Theory (QSDFT) for modeling adsorption in heterogene-
ous materials with corrugated amorphous walls applied to
siliceous materials. [44] extended to adsorption on nano-
porous carbons. [64] expanded upon this model using a
functional based on the PC-SAFT equation of state to study
the adsorption of methane, ethane, propane, and butane on
carbonaceous pores. [26] used two-dimensional (2D) cDFT
to calculate adsorption on activated carbons by introducing a
spatial function for modeling surface roughness and chemi-
cal heterogeneity. [67] studied the effects of energetic het-
erogeneities on the adsorption mechanism fluids (modeled
by a functional based on the PC-SAFT equation of state),
simulating heterogeneous carbonaceous cavities considering
a sinusoidal perturbation on the external potential.

In recent years, advancements in cDFT, particularly in
the development of three-dimensional (3D) cDFT, have

@ Springer

enhanced its capacity to model density profiles without rely-
ing on symmetry assumptions. These improvements have
broadened the applicability to a wider range of crystalline
porous materials, including MOFs, while maintaining its
computational efficiency [6, 18, 19, 30, 61]. On the other
hand, GCMC simulations have remained a popular choice for
researchers due to their flexibility in modeling fluid behav-
ior, enabling them to capture complex interactions between
gases such as methane, nitrogen, and carbon dioxide inside
crystalline nanoporous materials like MOFs [35, 76, 77].
As an example, recently, [71] presented 3D-cDFT calcula-
tions for the adsorption of CH, and H, inside the crystalline
MOF-5 3D structure. Extending the current methodologies
from 1D to 3D geometries is a challenging but necessary
step to accurately represent non-crystalline materials and
predict their adsorption behavior. This paper aims to address
this gap, extending the application of 3D-cDFT calculations
to amorphous nanoporous carbon materials without any
symmetry assumption.

This work aims to demonstrate the applicability of
3D-cDFT calculations and GCMC simulations for methane
inside these amorphous nanoporous carbon materials. To
offer a comparative analysis of the accuracy, and computa-
tional cost of 3D-cDFT calculations and GCMC simulations,
we will present case studies examining two different carbon
nanoporous materials and their interactions with methane
molecules. These case studies will highlight the differences
between the two methods in terms of their ability to model
fluid behavior under different thermodynamic conditions.

Following this section, Sect. 2 presents a brief back-
ground regarding the implementation of the GCMC and the
cDFT and their application for describing gas adsorption
in 3D geometries. The discussion of the results from these
methods is performed in Sect. 3. Finally, Sect. 4 presents the
conclusions of this work.

2 Theory and methods
2.1 Classical density functional theory

The cDFT is based on the fact that the grand thermodynamic
potential, Q[p(r)], and the Helmholtz free-energy, F[p(r)],
can be written as functionals of the density distribution of
the fluid, p(r) [17, 23, 24, 83]. The grand potential functional
Q[p(r)] is related to the free energy functional F[p(r)] by a
thermodynamic relation given as

Q[p(r)] = Flp(r)] + / dr(ge(r) = ulp(r), (1)
v

where u is the equilibrium chemical potential and ¢, (r) is
an external potential acting on the fluid. The Helmholtz free
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energy functional is determined by the sum of two terms,
in the form

Flpr)] = Fiylp()] + Foi [p(r)], ()

where the first term is the ideal gas contribution and the
second term is the excess free energy parcel (excess of ideal
gas). The ideal-gas contribution F'¢ is given by the exact
expression

Flp(r)] = kT / drp(n[In(p(r)A*) = 11, 3)
Vv

where kg is the Boltzmann constant, T is the absolute
temperature, and A is the well-known thermal de Broglie
wavelength.

The excess free energy functional F,,.[p(r)] contains
all the information about the interaction between particles
given by the pair potential u(r —#'). In our problem, the
molecule-molecule interactions of the fluid can be well
described by the Lennard—Jones potential in the form

wor=4](2)"-(2)'] @

Following our previous work [71] in 3D-cDFT, the excess
free energy is split into repulsive and attractive contribu-
tions, Frep and F,, respectively, such that

Fexc[p(r)] = Frep[p(r)] + Fd[t[p(r)] (5)

The repulsive term F,., in Eq. (5) can be modeled by the
free energy functional of a reference hard-sphere fluid [31]
defined by a short-range hard-sphere interaction with an
effective diameter for the hard-core region described by
Barker and Henderson’s [4, 5, 10] temperature-dependent
diameter, denominated d. The modified fundamental meas-
ure theory (FMT) [57] accurately describes the hard-sphere
fluid structures and can represent the hard-sphere free energy
functional, F; [p(r)]. In this work, we have applied the
antisymmetrized version of the White-Bear functional [58,
87] for the hard-sphere Helmholtz free energy contribution
as

Frep[p(r)] = Fhs[p(r)]

= kBT/drq)FMT({n(a)(r)}), ©
v

where ®p,,p is the local reduced free energy density of a
mixture of hard spheres, a function of the set of weighted
densities, n¥ (r). The FMT functional and the weighted den-
sities are defined in Ref. [60].

The attractive term F,, in Eq. (5) represents the excess
Helmbholtz free energy contribution due to the particle-
particle attractive interaction defined by the potential

r<o,

0
() = { e, e _ gy ™

r/c rle r>o,

with €, = —e, = 1.8577¢, 4, = 2.5449, and 1, = 15.4641.
The attractive parcel of the LJ potential was mapped onto
a Two-Yukawa potential, as proposed previously [29, 73,
74] to facilitate the Fourier Transform on the numerical
calculations. The free energy functional F,,[p(r)] can be
described by the novel weighted density functional theory
(WDFT) [86] as the sum of a mean-field term and a correla-
tion contribution, respectively, in the form

Fan[p(r)] = %/d"/dr//’(")uan(h' —r'|)p(r/)
14 Vv

®)
+kBT/dr(I>Corr(/3(r)),
14
where the weighted density field here is
given by )= [, dr oo (r—r) with

@0 (1) = O(d — |r|)/(4rd?/3), and O(x) is the Heavi-
side function. The correlation free energy density is fully
described in Ref. [71, 86].

Here, the Johnson, Zollweg, and Gubbins (JZG) equation
of state for LJ fluids was employed [28]. While this equation
has been shown to be highly accurate, it is important to note
that it is a semi-empirical relation obtained from MD simu-
lations with universal parameters. This EoS is written as

8 i 6
Fiz6(p) ai(/’03)l
Fus® _ e 32 470 e S 6 ©)

i=1 i=1

where g, and b; are coefficients functions of temperature only.
As reported in the original paper, the G, functions contain
exponentials of the density and the one nonlinear param-
eter. The CH, fluid-fluid interactions are described by the LJ
potential with the parameters given in Table 1. The choice
of TraPPE parameters is discussed in Supporting Informa-
tion. The mapping of the equation of state is presented by
the solid lines in Fig. 1 for CH, fluid, where the symbols are
our GCMC simulated data.

The total external potential produced by the solid atoms
on the fluid molecules is represented as a sum of the Len-
nard—Jones interaction between the solid atoms and the fluid
molecules as defined following

d)ext(r): Z ugflj)(lr_ril) (10)

i€ solid

with the mixed parameters obtained by the Lorentz-
Berthelot combining rules, given by o;; = %(o-i,- + oy) and
e; = (e;€7)'/2. The LI parameters for the carbon (C) atoms
are given in Table 1. In order to align with the periodic
boundary conditions, we replicate the solid unit cell into
a 3 x 3 x 3 supercell. As defined by Eq. (10), the external
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Fig. 1 Equation of state of bulk CH, fluid over a broad pressure and
temperature range. Open symbols: Our simulated GCMC data. Solid
lines: JZG EoS with LJ parameters from Table 1

Table 1 LJ parameters of the components

Component €/kg (K) o (A) Model

CH, 148.0 3.73 TraPPE"

C 47.856 3.473 DREIDING®
“Ref. [39]

PRef. [40]

potential is computed as being generated by all atoms within
the supercell in the centrally located unit cell.

The grand potential Q[p(r)] has a minimum value when
p(r) is the equilibrium density distribution, i.e., the minimum
value of Q[p(r)]is the equilibrium grand potential of the sys-
tem. Then, the equilibrium density profile can be calculated
by the extremum of the grand canonical potential, such that
(see the detailed derivation in the Supporting Information
document)

6Q[p(r)]
op(r) |uvr

6F o [p(0)]

=k,T1 A3
T In(p(r)A\”°) + 5() an

+ P (r) — = 0.

Using the definition of the chemical potential in the form
u = kpT In(p,A®) + piy, Where p,, is the uniform fluid bulk
density and u.,. is the excess chemical potential, we can
write the simplified form of Eq. (11) as

p(r) = pp, expl=Pe (1) + V() + ey, 12)

where f = (kzT)~!is the inverse of the thermal energy, and
the term ¢(V(r) is the first-order direct correlation function
defined through the relation ¢V(r) = —B6F., [p(r)]/p(r).
The sum ¢V(r) + fu,,. acts as a effective potential cor-
recting the external potential ¢,,,(r) due to the fluid-fluid
correlation. In our specific case, the local density field is a

@ Springer

3D field, which necessitates the utilization of isosurfaces to
visualize our cDFT results.

Finally, the absolute adsorption quantity can be calculated
by definition as

Nabs = / p(r)dr’ (13)
V,

uc

where the local density distribution p(r) is given by Eq. (12).
We can also define the mean density inside the nanoporous
material by the relation

N,

Pavs = 7= (14)
where V. is the volume of the unit cell.

To speed up the numerical calculations, we used the fast
fourier transform (FFT) to calculate all the necessary convo-
lutions. All the numerical FFT convolutions are calculated
using the PyTorch package [49] with GPU acceleration.
Our group implemented the FMT and WDFT functionals in
Python code. [70] The Gibbs phenomenon was reduced by
multiplicating the Fourier transform &, (k) by the Lanczos ¢
-factor, o(k) = sin(k/ky.y )/ (k/kpay), Where k., is the maxi-
mum wavenumber from the FFT procedure.

The equilibrium condition of the cDFT, Eq. (11), is
solved using an Accelerated Bias-Corrected Fast Inertial
Relaxation Engine (ABC-FIRE) [7, 14, 21] also imple-
mented in Python by our group [65, 69]. The ABC-FIRE
parameters are set as @ = 0.2 and df = 0.002. The algorithm
convergence criterion is

max

1 BoL/6p(r)
Il lr <1, (15)
/NxNyNZ (atol + rtol|p(r)|)

with atol = 107 and rtol = 107*, where ||A|| is the Frobe-
nius norm.

The initial density was considered uniform and equal to
the bulk density value, p,. In the highly repulsive region,
where ¢,,,(r)/kz > 1.6 x 10* K, the initial density p(r) was
assumed to be zero. For the adsorption isotherm calcula-
tions, the density profile obtained at the previous pressure
step is used as the initial profile of the next pressure step.
We have used a pressure step of 0.01 bar from 0.001 bar to
1.0 bar, a step of 0.1 bar from 1 bar to 10 bar, a step of 0.5
bar from 10 bar to 150 bar, and a step of 5 bar from 150 bar
to 500 bar.

2.2 Grand canonical Monte Carlo

All GCMC simulations were performed using the open-
source software GPU Optimized Monte Carlo (GOMC) [45].
The files required by GOMC for the simulations were gen-
erated using the MoSDeF-GOMC package [11]. Methane
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molecules were described as LJ spheres using parameters
from Table 1. The carbon structures were considered rigid,
and the carbon atoms that compose them have also been
described as LJ spheres, with the parameters given in
Table 1. Parameters for the solid—fluid interactions were
calculated using Lorentz—Berthelot combining rules. A 14
A cut-off radius and long-range corrections for LJ interac-
tions were used for all calculations.

The adsorption isotherms were calculated with 40 x 10°
Monte Carlo steps, 10 x 10° for equilibration and 30 x 10°
for production, at 200 K, 240 K, 270 K, and 300 K. In order
to conduct simulations at constant chemical potential, the
pressures were pre-computed through GCMC simulations
for the bulk fluid, as presented in Fig. 1.

2.3 Amorphous carbon nanostructures

Figure 2 shows the two carbon structures taken from the
database of porous rigid amorphous materials [78]: aCar-
bon-Bhatia-id001 [46], and aCarbon-Marks-id002 [51].

The first, aCarbon-Bhatia-id001, is an atomistic model
of the structure of an ACF15 activate carbon generated by
HRMC using the experimental pair distribution function of
the material obtained by X-ray diffraction [46]. The second
was generated by MD using the environment-dependent
interaction potential (EDIP) [37, 38]. Starting from an amor-
phous carbon precursor generated by liquid quenching [37],
an annealing simulation is performed at 4000 K to obtain the
final structure [51].

Our cDFT calculations are made using the number of
grid points of N3 = 323 and N° = 643. For the cases stud-
ied here, the results with a larger number of grid points,
e.g., N3 = 1283, are identical to the results with N> = 64°.
As the aCarbon-Bhatia-id0O1 has a lattice length of

(a) aCarbon-Bhatia-id001

L =295 nm, 2.98 nm, 3.02 nm) with the unit cell volume
of V. = L,L,L, =26.55 nm?, the corresponding grid sizes
are related to the molecule diameter as shown in Table 2 for
the CH, molecule. For the aCarbon-Marks-id002, the lattice
lengths are L = (3.79 nm, 3.79 nm, 3.79 nm) with a unit
cell volume of V. = 54.44 nm?, and the corresponding grid
sizes are also presented in Table 2. Our systematic evalua-
tions indicate that a grid size below 0.250 is most suitable
for the cDFT calculations.

3 Results and discussion

Figure 3 illustrates the absolute isotherms of CH, adsorption
on aCarbon-Bhatia-id001 at temperatures of 200 K, 240 K,
270 K, and 300 K. Symbols represent the GCMC simulation
data, while the 3D-cDFT results are presented as dashed and
solid lines. The data are given in the supplementary informa-
tion (Tables S1-S4). The no-correlation approximation, with
the local density given by p(r) = p, €Xp(—fPex (1) + P hexc)s
is shown as dotted lines. This approximation is sometimes
denominated ideal because there is no contribution from the
excess free energy functional at the adsorbed phase, although
the excess quantities are present in the bulk phase [84]. The

Table 2 Relative grid size used to calculate the adsorption isotherm
of CH, in a carbon nanostructures with 3D-cDFT

Model N3 [Ax/cy, Ay/oy, Az/oy]

Bhatia-id001 323 [0.247, 0.250, 0.253]
643 [0.124, 0.125, 0.127]

Marks-id002 323 [0.318, 0.318, 0.318]
643 [0.159, 0.159, 0.159]

\

(b) aCarbon-Marks-id002

Fig.2 Carbon structures: a aCarbon-Bhatia-id001 [46] (29.5 A x 29.8 A x 30.2 A, 1166 atoms), b aCarbon-Marks-id002 [51] (37.9 A x 37.9 A

% 37.9 A, 4096 atoms)
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Fig. 3 Isotherms of the absolute adsorption amount of CH, in aCar-
bon-Bhatia-id00O1 at temperature values of 200 K, 240 K, 270 K, and
300 K and a wide pressure range in logarithmic scale. Closed sym-
bols: Our GCMC simulated data. Dotted lines: No-correlation model.
Dashed lines: Our c¢DFT results with N3 =323, Solid lines: Our
cDFT results with N> = 643

curves reveal a steady increase in the amount of CH, adsorp-
tion as pressure rises at each temperature. There is a remark-
able consistency between the cDFT results and GCMC data
across the entire pressure range and at all temperatures.
However, as expected, the ideal gas approximation cannot
describe the isotherm curves for higher pressure values. This
limitation arises from the significant role of fluid-fluid cor-
relations for the CH, fluid within this solid. For example,
at 300 K the fluid-fluid correlations are very important at
pressures exceeding 0.1 bar. Moreover, there is no noticeable
disparity between the results when comparing the number of
grid points of N3 = 323 and N3 = 643,

Similarly, Fig. 4 shows the absolute isotherms of CH,
adsorption on aCarbon-Marks-id002 at 200 K, 240 K, 270
K, and 300 K. The data are given in the supplementary infor-
mation (Tables S5-S8). There is an excellent agreement
between the results obtained by the two methods over the
entire pressure range and for all temperatures using N> = 643
grid points. The cDFT calculations with N3 = 643 perform
better than the cDFT calculations using N3 = 323, mainly at
high-pressure regions when compared to the GCMC simula-
tion data. In fact, the cDFT with N3 = 323 overestimating the
amount adsorbed.

Upon examining the results presented in Figs. 3 and 4, it
becomes apparent that the aCarbon-Bhatia-id001 material
exhibits a higher adsorption quantity of CH, compared to
aCarbon-Marks-id002, despite the latter having a larger
unit-cell volume. The unit-cell volume of the Carbon-
Marks-id002 structure is nearly twice that of the Carbon-
Bhatia-id0O1 structure. However, the former structure
contains approximately four times as many carbon atoms
as the latter structure. Thus, the discrepancy in adsorption
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Fig.4 Isotherms of the absolute adsorption amount of CH, in aCar-
bon-Marks-id002 at temperature values of 200 K, 240 K, 270 K, and
300 K and a wide pressure range in logarithmic scale. Closed sym-
bols: Our GCMC simulated data. Dotted lines: No-correlation model.
Dashed lines: Our c¢DFT results with N3 =323, Solid lines: Our
cDFT results with N> = 643

quantities can be attributed to the differing solid densities
of the two materials: the aCarbon-Bhatia-id001 has a den-
sity of 875.9 kg/m?, while the aCarbon-Marks-id002 has a
significantly higher density of 1500.6 kg/m?.

We also can calculate the Helium (He) void fraction,
Voore/ Vues Where V. is the pore volume obtained by He
pycnometry [43]. This pore volume also can be calculated
by the 3D-cDFT as V,,,, = /V exp[—ﬁd)g:’)(r)]dr, with the
He LJ parameters oy, = 2.58 A, ey, /kz = 10.22 K) [25].
For the aCarbon-Bhatia-id0O1 structure, the helium void
fraction is computed to be 0.711, while for aCarbon-
Marks-id002, it is 0.292. These values are in accordance
with those documented in Ref. [78], specifically 0.76 and
0.33, respectively. The reduced void fraction in aCarbon-
Marks-id002 imposes a limitation on the adsorbed amount
of CH, onto this structure. Furthermore, these findings
underscore the importance of the fluid—fluid correlation
effects generated by the exclusion volume phenomenon
when performing adsorption calculations using 3D-cDFT
in amorphous carbon nanoporous materials. We also pre-
sent the isotherm curves of the excess adsorption in sup-
plementary information (Figs. S2, S3).

It is important to note that GCMC calculations use peri-
odic boundary conditions: the simulation box is replicated
through space to form an infinity lattice [1]. In that way,
using the same condition to calculate external potential
in cDFT is necessary to obtain agreement between the
results. Without this condition, cDFT underestimates
the amount adsorbed. The main advantage of cDFT is
computational time. In some instances, the time needed
to calculate the entire isotherm is similar to the GCMC
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time to calculate just one point of the isotherm. For these
structures with many atoms, GCMC is quite exhaustive. At
each step, all solid—fluid interactions need to be calculated.
On the other hand, the external potential used in cDFT is
calculated only once.

All calculations were performed on a regular desktop:
Intel Core i7-11700 CPU, system’s memory of 16 GB
DDR4-RAM, GPU NVIDIA GeForce GTX 1050 Ti, and
operational system Ubuntu 22.04 LTS. At 300 K, using a
grid of N? = 643 points, the computational time required
for determining the isotherm of CH, in aCarbon-Bhatia-
id001 was 12 min and 45 s, considering 183 pressure values,
while in aCarbon-Marks-id002 was 3 h and 21 min with
266 pressure values. In contrast, the GCMC method neces-
sitated 48 min for calculating only the final point on the
isotherm in aCarbon-Bhatia-id0O1, and 1 h and 55 min in
aCarbon-Marks-id002.

A local density isosurface provides a three-dimensional
visualization of points within a spatial volume with the
same density value. Figures 5 and 6 display the local density
isosurfaces of CH, in aCarbon-Bhatia-id001 and aCarbon-
Marks-id002, respectively, at 300 K and at three distinct
pressure values: 10 bar, 100 bar, and 300 bar. The isosur-
face in yellow means the region with a density of 1 mol-
ecule/nm?, while the red isosurface represents a density of
100 molecules/nm>. Given that aCarbon-Bhatia-id001 has
a more substantial pore volume, more yellow regions are
observable. Moreover, for this structure, the red regions, sig-
nifying higher density, expand in both number and area with
increasing pressure. Conversely, for aCarbon-Marks-id002,
the variations in the yellow and red regions are minimal due
to the saturation of adsorption amount at lower pressures.
Additional density isosurfaces are given in the supplemen-
tary information (Figs. S4, S5).

(a) 10 bar

(b) 100 bar

(¢) 300 bar

Fig.5 Density isosurfaces of CH, in aCarbon-Bhatia-id001 with local density values of 1 molecules/nm? (yellow) and 100 molecules/nm? (red)
at the temperature of 300 K and three different pressures of a 10 bar, b 100 bar and ¢ 300 bar

(a) 10 bar

(b) 100 bar

(¢) 300 bar

Fig. 6 Density isosurfaces of CH, in aCarbon-Marks-id002 with local density values of 1 molecules/nm? (yellow) and 100 molecules/nm? (red)
at the temperature of 300 K and three different pressures of a 10 bar, b 100 bar and ¢ 300 bar
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The comparison of density profiles derived from GCMC
simulations and cDFT calculations presents a significant
challenge in three dimensions. Given that density is a scalar
field dependent on three spatial coordinates, any attempt at
three-dimensional visualization would inhibit a quantitative
comparison. Hence, in this study, we opted to compare the
marginalized distributions, which are defined based on the
following relationship

p(x])=//p(xl,x2,x3)dx2dx3, (16)

where the marginalized distribution p(x,) is only dependent
of the coordinate x;, and the integral in Eq. (16) is performed
on the other two coordinates, named x, and x;. Thereto, the
integral | p(x,)dx, gives the total adsorbed amount of mate-
rial as well as in Eq. (13).

Figure 7 displays the marginalized densities of CH, inside
the aCarbon-Bhatia-id0O1 structure calculated at 300 K and
100 bar, facilitating a local comparison between the two
methodologies. There is a strong correlation between the
histogram of p generated by the GCMC simulation data and
the marginalized densities derived from the local density
distribution calculated with the 3D-cDFT.

Upon examining these profiles and comparing them with
the information from the isosurfaces, as shown in Fig. 5, the
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Fig.7 Marginalized density distribution of CH, in aCarbon-Bhatia-
id001 at the temperature of 300 K and the pressure of 100 bar. The
unit #/A corresponds to molecules/A
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symmetry of the aCarbon-Bhatia-id001 structure along the
x-axis becomes evident, characterized by the nearly homo-
geneous density distribution. The marginalized density dis-
tribution on the y-axis has inhomogeneities. One example is
a broad peak at y &~ 13 A. The density distribution along the
z-axis is more complex, featuring two narrow peaks around
z~ 10 A and z ~ 17 A. However, the remainder of the dis-
tribution in the z-axis appears to be a complex convolution
of other peaks with varying thicknesses. There are two for-
bidden regions for the CH, molecules inside this structure
along the z-axis located at z ~ 13 A and z ~ 19 A. These
positions are correlated with the location of two graphene
sheets inside the aCarbon-Bhatia-id001 structure, as we can
visualize in Fig. 5.

Equivalently, Fig. 8 illustrates the marginalized densities
of CH, within the aCarbon-Marks-id002 structure, calcu-
lated at 300 K and 100 bar. In this instance, all the marginal-
ized distributions exhibit inhomogeneities. As anticipated,
the values of the marginalized densities in aCarbon-Marks-
1id002 are lower than those in aCarbon-Bhatia-id001. There
are also regions in the y-axis that are inaccessible to CH,
molecules, represented by a broad region at y ~ 12 A and a
narrow region at y ~ 24 A. The distributions in all directions
exhibit the convolution of several peaks. In this case, there
is no single direction where the marginalized distribution

0 10 20 30
Length (A)

Fig.8 Marginalized density distribution of CH, in aCarbon-Marks-
id002 at the temperature of 300 K and the pressure of 100 bar. The
unit #/A corresponds to molecules/A
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approximates homogeneity. Interestingly, this structure is
similar to stacked graphene sheets, with several defects.
These defects are the most likely places to find CH, mol-
ecules, as shown in Fig. 6.

It is noticed that the representation of these structures
using one-dimensional models, such as slit-shaped pores,
fails. To accurately depict the fluid—structure in disordered
carbon structures 3D model is needed. In such cases, the use
of a simulated kernel of local isotherms in a series of inde-
pendent slit-shaped pores to compute the pore size distribu-
tion in each of these directions merely results in a numerical
fit. This approach is incapable of describing the asymmetry
of the structure in the other directions, a feature that is char-
acteristic of amorphous nanoporous carbons.

4 Conclusions

This study has provided a comprehensive examination of
CH, adsorption in amorphous nanoporous carbon materi-
als, specifically aCarbon-Bhatia-id001 and aCarbon-Marks-
id002 (two molecular 3D models of nanoporous carbon)
under varying conditions of temperature and pressure.
Molecular simulations and cDFT calculations have proven
instrumental in elucidating the fluid—structure inside these
materials. However, the complexity of these materials, par-
ticularly their three-dimensional geometries and lack of
symmetry, necessitates a more detailed approach.

The comparison of density profiles derived from GCMC
simulations and cDFT calculations revealed the importance
of considering fluid-fluid correlation effects when perform-
ing adsorption calculations. The results showed an excel-
lent agreement between the two approaches for an exten-
sive range of pressures ans temperatures. A more significant
amount of CH, adsorption was observed inside the aCarbon-
Bhatia-idOO1 material than in the aCarbon-Marks-id002,
despite the latter having a larger unit-cell volume. This dis-
crepancy can be attributed to the different solid densities and
pore volumes of the two materials. Furthermore, the study
highlighted the limitations of simplistic models, such as slit-
shaped pores, in accurately representing fluid structure in
disordered carbon structures. These findings underscore the
need for more sophisticated methodologies like 3D-cDFT to
describe nanoporous carbon materials.

5 Supplementary Information

The online version contains supplementary material avail-
able at https://link.springer.com/article

Derivation of the expression for the Grand Potential, and
the derivation of Eq. (11). Excess adsorption isotherms and
density isosurfaces of CH, inside aCarbon-Bhatia-id001 and

aCarbon-Marks-id002. Tables of absolute adsorption data
from GCMC simulations and cDFT calculations.
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