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A BRIDGE BETWEEN DIFFERENT LENGTH SCALES

Approximation by a
Free-energy functional

>

Individual particles

GROMACS, LAMMPS,
CASSANDRA, RASPA

DFT

Density field



MAIN PROBLEM
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ADSORPTION IN ACTIVATED CARBON
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Sermoud, V. M., Barbosa, G. D., Soares, E. do A., et al (2022). Chemical Engineering Science, 247, 116905.




LLJ FLuiD INSIDE A SLITLIKE CARBON PORE
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H. ADSORPTION ON MOF-5

p=0.001 A3

P =60 bar
T'=300 K




BuTt COULD WE DO SOMETHING

MORE SIMPLER?




CLASSICAL DENSITY FUNCTIONAL THEORY

Grand Potential

UV.T.10) = Flotr)) + | dr Vesa(r) = 1] (2 Flp] = Balp] + Fexclo

‘ J

External potential acts
= P Particle-particle

Free Energy Functional

Equilibrium as a chemical potential . .
Interaction
Qfp(r)] = Qlp(r)]eq.
Equilibrium Condition Adsorbed Quantity

,0(7") = Pb€ _BveXt( ) - BM;?ZS’) tBHexc j>\ Nads :/ dr ,0(’)“)
Vv

Wu, J., & Li, Z. Annual Review of Physical Chemistry, 58(1), 85-112. (2007)




WHAT CAN WE DO WITH CLASSICAL DFT?

. . Free-energy Functionals
Fluid Equation of State

vdW, GvdW, LJ, ||» LD;&%;F, é\ﬁng WDA,
PC-SAFT,.. : -

Confined fluid EOS

TRAVALONI, BARBOSA,...

Little approximations give Big reparametrization of the fluid-solid characteristics



LENNARD-JONES FLUIDS
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Lennard-Jones potential
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Hansen, J.P. and McDonald, I.R., 2013. Theory of simple liquids: with applications to soft matter.
J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, Molecular Physics 78, 591 (1993).




RADIAL DISTRIBUTION FUNCTION
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Density

Correlations are
Data from X-Ray /1’6’ [

very important!
Experiment [
perime 0.5F
i ; Non-local DFT
0.0 T
0
Verlet, L. (1968). Physical Review, 165(1), 201-214.
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(FRADIENT EXPANSION TO

DESCRIBE DENSITY PROFILES




(GRADIENT EXPANSION

Relative Density deviation

p(r) = pp(1+9(r))

Excess free-energy functional
k) =P 1 @R+ Pk ) =+ PV PV

Fo|T, p] = FO) — %/@T / dr (B1¢® + B2y V29 + B3y V)

Emmerich et al. (2012). Advances in Physics, 61(6), 665-743.



FIRST ORDER (GRADIENT EXPANSION = DENSITY
(GRADIENT THEORY
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PHASE SEPARATION DYNAMICS
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SECOND ORDER (GRADIENT |

HXPANSION

Foe — / a7 [foxc(p()) + Bo(Vp(r))? + Ba(V2p(r))!]
V

The considered analytic representation of g(r) is thus
given by a superposition of the two functional forms given
by Egs. (11) and (13),

g(r)=0 forr<o

=g%P(y) foro<r<r*

=g""(r) forr=r*. (14)
% Here
. A B _
§%(r) = ZeHr) 4 = cos(Blr - o]+ e, (15)
r r
_ and will be referred to as a depletion part of the RDF, and
L L 1 1 ] 1 1 1 L
i C :
1 2 3 £ = 1+ cos(wr + e, (16)
Trokhymchuk, A., Nezbeda, I

16
., Jirsak, J., & Henderson, D. (2005). The Journal of Chemical Physics, 123(2), 024501.



DENSITY PROFILE BASIS
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INTEGRAL QUANTITIES FOR

ConNFINED FLrLuiDs EOS




ADSORPTION ISOTHERMS

Grand Potential

AV, T, 1) = Flo(r)] + / A [V () — 1] plr) Nags = /v dr p(r)

v
1

(X) = 5 [ v p(r)x(r)

(F)
Nads

Integral Langmuir-like Isotherm

N B B{(Vext)+Buw

N, 14+ eBr—B(Vext)+Buw

= p— (Vext) +w > kgTIn(Nags) — kT In(N, — Nags) = p —

<‘/ext> + w
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ADSORPTION ISOTHERMS WITH STEELE POTENTUIAL
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CONCLUSIONS AND PERSPECTIVES




CONCLUSIONS

* The size correlations are very important
to describe the high concentration systems;

* The fluid-solid interaction can be
described by the DFT on the same level of
MC/MD;

* There is a connection between DFT and

Phase-Field Models (Possible Scale

Integration);

* Could we measure other quantities on

confined fluids?! (Profile vs. Isotherm)

microscopic

mesoscopic

macroscopic

0% %0 MNewton's equations,
o : :
- i,%”aﬁ Langevin equations,
9 go0 Smoluchowski equations

individual particles

‘ approximations for the functional

- density functional theory (DFT)

microscopic one-particle density field

; gradient expansion

H phase-field-crystal (PFC) models

mesoscopic phase field

‘ coarse granmng

n phase-field (PF) models

coarse-grained phase feld

symmetry-based macroscopic approaches
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BAcCk-UP SLIDES




Ornstein-Zernike Equation

h(r) = g(r) — 1 = e(r) + p / (|r — ' h(r) d

' Relation with pair
' potential

Closure relations: <

RPA (Random Phase Approximation): C(T) — —BU(T)

MSA (Mean-Spherical Approximation): c(r) _ g(r)(l _ B_Bum)» r<o

| —Bu(r),r > o
PY (Percus-Yevic): ((y) = (1 — e_ﬁ’“’(r))(h(r +1)

HNC (Hyperneted-Chain) ¢(r) = —Bu(r) + h(r) — In(1 + h(r))

SCOZA, SMSA, HMSA, RY, ....

C. Caccamo, Integral Equation Theory Description of Phase Equilibriain Classical Fluids, Physics Report 274, 1-105 (1996).
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