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Termalizacao Atrasada em Supernovas
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Atrasam o equilibrio térmico do elemento de fluido.
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Perfis de temperatura e densidade (IC1)
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Abundancia e

—nergia Liberada (IC1)

T(ms) “He(Mg) “C(Mg) °O(Mg) “Ne(Mp) Mg (Me) [*Si](Me) [P°Ni] (Mg)
0 0.001 0.250 0.250 10~° 10~ 0.233 0.266
5 1074 0.250 0.253 10~° 10> 0.286 0.211
10 10~° 0.250 0.254 106 10~° 0.307 0.189
25 1010 0.250 0.266 10~ 104 0.337 0.147
50 10~10 0.250 0.300 1076 0.015 0.359 0.076

100 101 0.250 0.353 10~ 0.054 0.318 0.025
200 10~12 0.250 0.424 106 0.099 0.219 0.008
400 10—20 0.250 0.503 10~° 0.150 0.095 0.002
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Perfis de temperatura e densidade (IC2)
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Abundancia e Energia Liberada (IC2)

T(ms) “He(My) “C(Mz) O (Me) “'Ne(My) **Mg(Mo) [*°Si] (Ms) [°Ni] (M)

0

5 0.166 0.497 0.490 0.001 104 0.191 0.055
10 0.163 0.497 0.491 104 10~* 0.208 0.041
25 0.150 0.496 0.491 1072 0.001 0.236 0.026
50 0.126 0.494 0.492 1072 0.003 0.264 0.021

100 0.082 0.494 0.495 104 0.011 0.298 0.020
200 0.061 0.505 0.505 0.002 0.035 0.282 0.010
300 0.055 0.513 0.507 0.004 0.048 0.263 0.010
500 0.052 0.523 0.509 0.007 0.060 0.239 0.010
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Qual a condicao inicial advinda de um sistema single
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Qual o valor fisico de 77
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Obrigado!




