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Introducao



Astrofisica Nuclear

- Objetivo: entender 0s processos nucleares que ocorrem No Universo.

- Esses processos nucleares contribuem para a origem dos elementos
quimicos e a geracao de energia em estrelas.
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Origem dos elementos

relative abundance (atoms per hydrogen atom)
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Interacoes de Raios Cosmicos



Tipos de Processos Nucleares

Transferéncia (interacao forte)
15N(p’ @)120 oc~0.5b at Ep = 2.0 MeV
Captura (int. eletromagnética)

“He(ar,v) Be c~10"°b at £, = 2.0 MeV

Fraca (interacao fraca)

p(p,etv)d c~10"2"b at £, = 2.0 MeV

b = 100 fm? = 10~ 2% ¢m?



O que sao estrelas?

Esferas luminosas auto-
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O que sao estrelas?
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Reacoes
Termonucleares

e Em ambientes estelares,
nucleos sao térmicos:
distribuicao de Maxwell-
Boltzmann

e Barreira Coulombiana :
tunelamento quantico

* Probabilidade de reagao tem
um pico em uma energial
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Alguns estagios da Queima Nuclear



Queima de Hidrogenio: CIClo p-p - SaSkiniasis ™™
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Queima de Hidrogénio: ciclo CNO
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Queima de Hélio
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STELLAR NURSERY
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Supernova do Tipo ll: Colapso do caroco

Stage :

Imescale

H burning
He Burning
C Burning
Ne Burning
O Burning
Si Burning

7 million years
0.5 million years
600 years
1 year

6 months
1 day

25 M

Depois da queima do Si nao ha mais
combustivel.

Nucleo tem massa critica de 1.4 Mg
acima da qual, elétrons nao
sustentam a gravidade.

captura eletronica e
fotodesintegracao: remove energia
Interna, reduz a pressao

Caroco de milhares de km colapso
para uma proto-estrela de neutros
com km de raio apenas.
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Supernova do Tipo ll: Colapso do caroco

Stage | Timescale

H burning 7 million years
He Burning | 0.5 million years

i

25 M

C Burning 600 years
Ne Burning | 1 year
O Burning | 6 months
Si Burning | 1 day

Depois da queima do Si nao ha mais
combustivel.

Nucleo tem massa critica de 1.4 Mg
acima da qual, elétrons nao
sustentam a gravidade.

captura eletronica e
fotodesintegracao: remove energia
Interna, reduz a pressao

Caroco de milhares de km colapso
para uma proto-estrela de neutros
com km de raio apenas.

(Colapso do Carogo!)

13



Supernovas do Tipo la:
—Xplosao Termonuclear

* Energia cinética do material
ejetado: Eiin ~ 10°! erg

* Brilho uniforme (vela padrao da
cosmologia): A, ~ —19.3

e sem H e He no espectro w
objeto explosivo: Ana Branca de
C+0

e Deflagracao ou detonacao de
carbono de uma ana-branca que
atinge sua massa limite (limite de
Chandrasekhar, 1.4 M).
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15 Questdes-chave em Astrofisica Nuclear

(i) Why do predictions of helioseismology disagree with those of the standard solar
model?

o (ii) What is the solution to the lithium problem in Big Bang nucleosynthesis?

(iii) What do the observed light-nuclide and s-process abundances tell us about
convection and dredge-up in massive stars and AGB stars?

(iv) What are the production sites of the -ray emitting radioisotopes #Al, *Ti and
60Fe?
(v) What is the origin of about 30 rare and neutron deficient nuclides beyond the iron
peak (p-nuclides)?
® (vi) What causes core-collapse supernovae to explode?
(vii) What is the extend of neutrino-induced nucleosynthesis (v-process)?

(viii) What is the extend of the nucleosynthesis in proton-rich outflows in the early ejecta
of core-collapse supernovae (vp-process)?

(ix) What are the sites of the r-process?

e (x) What causes the discrepancy between models and observations regarding the mass
ejected during classical nova outbursts?

(xi) Which are the physical mechanisms driving convective mixing in novae?
® (xii) What are the progenitors of type la supernovae?

(xiii) What is the nucleosynthesis endpoint in type I X-ray bursts? Is there any matter
ejected from those systems?

(xiv) What is the impact of stellar mergers on Galactic chemical abundances?

® (xv) What are the production and acceleration sites of Galactic cosmic rays?

J. Jose & C. lliadis, “The Unfinished Quest for the Origin of the Elements”,

review article submitted to Reports on Progress in Physics (2011)
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