

Problema 1: Uma pessoa, a qual encontra-se no topo de uma rocha em formato hemisférico de raio R , chuta uma bola (inicialmente em repouso no topo da rocha) dando a ela uma velocidade inicial v_i como mostra a figura (1).

(a) Com essa velocidade inicial, quão longe da base da rocha a bola atingirá o solo?
 (b) Qual deve ser a velocidade inicial mínima para que a bola nunca toque na rocha após ser chutada?

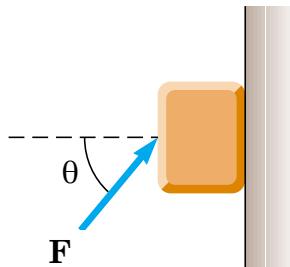


Figura 1: Lançamento horizontal de uma bola.

Problema 2: Um foguete de dois estágios viaja com uma velocidade V com relação a Terra quando acaba o combustível do primeiro estágio. Parafusos explosivos liberam o primeiro estágio e empurram-no para trás com uma velocidade v relativa ao segundo estágio. Sabendo que o primeiro estágio é três vezes mais pesado que o segundo, qual é a velocidade do segundo estágio após a separação?

Problema 3: Um bloco de massa m é empurrado contra um muro por uma força \mathbf{F} que faz um ângulo θ com a horizontal como mostra a figura (2). O coeficiente de atrito estático entre o bloco e o muro é μ_e . Determine:

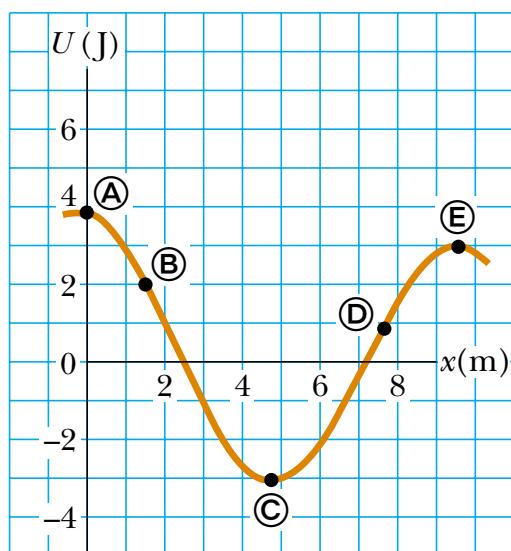

- (a) o módulo da força normal \mathbf{N} do muro sobre o bloco;
- (b) o módulo da força de atrito \mathbf{f}_{at} entre o muro e o bloco;
- (c) os valores possíveis do módulo de \mathbf{F} para que o bloco permaneça parado sem deslizar sobre o muro.

Figura 2: Bloco em contato com muro.

Problema 4: Para a curva de energia potencial apresentada na figura (3), determine:

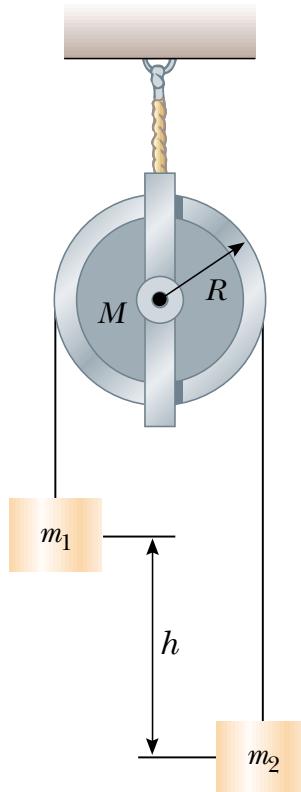

- (a) onde a força F_x é positiva, negativa, ou zero nos cinco pontos indicados;
- (b) os pontos de equilíbrio estável, instável, e neutro.
- (c) Esboce o gráfico de versus x desde $x = 0$ até $x = 9.5$ m.

Figura 3: Energia potencial $U(x)$.

Problema 5: Um bloco de massa $m_1 = 5m$ e um bloco de massa $m_2 = 3m$ estão suspensos, unidos por um fio que passa por uma roldana de raio R e massa $M = m$, que está suspensa por uma corda no teto, como mostra a figura (4). O fio tem massa desprezível e não desliza sobre a roldana, enquanto a roldana é permitida girar sobre seu eixo sem qualquer atrito. Os objetos começam do repouso de uma distância h entre eles. Considerando a roldana como um disco, cujo momento de inércia com relação a um eixo que passa pelo centro de massa é $I_{cm} = MR^2/2$. Determine:

- (a) o módulo da aceleração dos blocos e o valor da aceleração angular da roldana;
- (b) o módulo da força de tração em cada trecho do fio;
- (c) o módulo da força de sustentação que a corda realiza sobre a roldana;
- (d) a energia cinética do bloco de massa m_1 após descer de uma altura h .

Figura 4: Maquina de Atwood melhorada.