

Problema 1: Um projétil de massa m move-se para a direita com velocidade v_i , conforme figura (1a). O projétil atinge e gruda na extremidade de uma barra, que estava inicialmente em repouso, de massa M e comprimento d , a qual pode girar ao redor de um eixo sem atrito que passa pelo seu centro, conforme figura (1b).

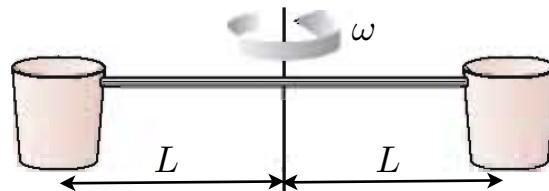
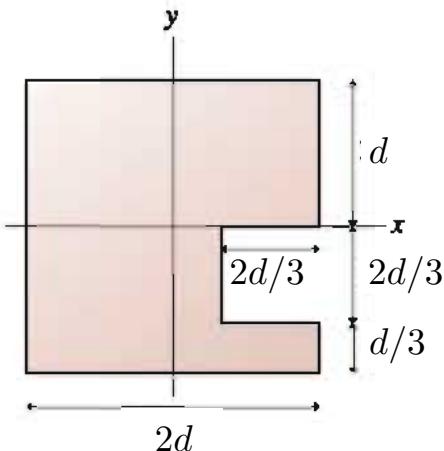

- (a) Determine os momentos linear e angular do sistema antes da colisão.
- (b) Determine os momentos linear e angular após a colisão e discuta suas possíveis conservações.
- (c) Encontre a velocidade angular do sistema após a colisão.
- (d) Determine a fração de energia mecânica perdida devido à colisão.

Figura 1: Vista superior da colisão


Problema 2: Dois baldes vazios, de massa m cada e presos por uma barra de massa desprezível, são postos a girar como velocidade angular ω em torno de um eixo fixo, como mostra a figura (2). Em seguida, enche-se cada balde com uma quantidade de água de massa $2m$ e deixa-se o sistema girar com a mesma velocidade angular ω anterior. Considerando que os baldes tem raio interno muito pequenos de tal modo que podemos desprezar seus momentos de inércia com relação ao eixo do balde, determine:

- (a) o momento angular antes e depois de se encher os baldes, e compare os resultados.
- (b) a energia cinética antes e depois de se encher os baldes, e compare os resultados.

Figura 2: Baldes girando

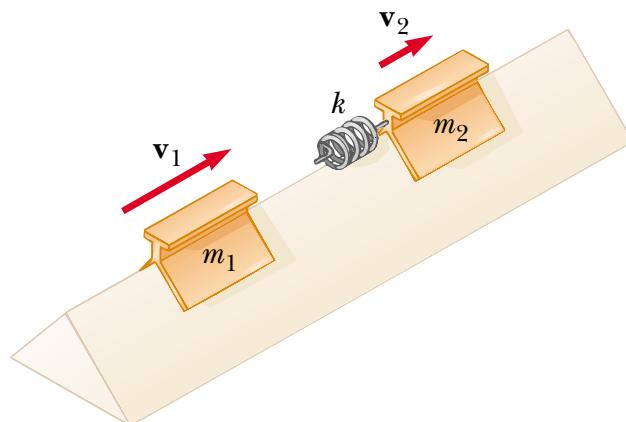

Problema 3: Quais as coordenadas x e y do centro de massa para uma chapa de aço uniforme apresentada na figura (3).

Figura 3: Formato da chapa de aço

Problema 4: Dois carrinhos estão sobre um trilho de ar. Uma mola de constante elástica k está presa num das extremidades de um dos carrinhos. O primeiro carrinho de massa m_1 tem velocidade \mathbf{v}_1 , e o segundo carrinho de massa m_2 tem velocidade \mathbf{v}_2 , conforme mostra figura (4). Quando m_1 colide com a mola presa em m_2 e a comprime, a mola tem seu máximo de compressão x_{\max} , a velocidade de ambos carrinhos é \mathbf{v} . Encontre:

- (a) a velocidade \mathbf{v} no máximo de compressão.
- (b) o máximo de compressão na mola x_{\max} .
- (c) a velocidade de cada carrinho após m_1 perder contato com a mola.
- (d) a velocidade do centro de massa do sistema antes e depois da colisão.

Figura 4: Dois carrinhos sobre trilho de ar.

Problema 5: Um projétil é lançado obliquamente e ao chegar no ponto mais alto de sua trajetória este se fragmenta em dois pedaços, de massas $m/3$ e $2m/3$ respectivamente. O alcance de cada projétil foi $2d$ e d , respectivamente. Sabemos que a trajetória do centro de massa é aquela seguida pelo projétil se ele não se fragmentasse. Desta forma, qual seria o alcance o projétil se ele não explodisse? Em outras palavras, qual foi o alcance do centro de massa?