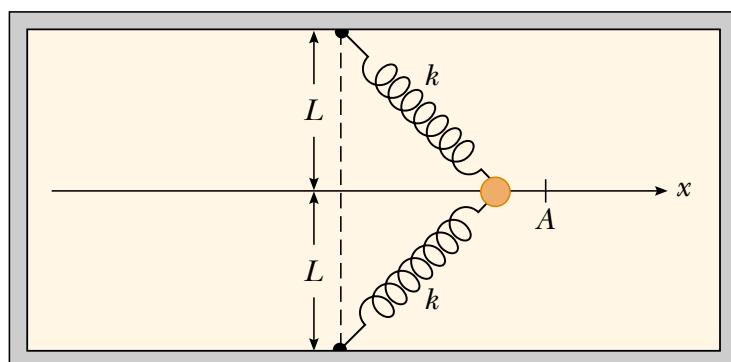


Problema 1: Uma partícula é presa entre duas molas idênticas numa mesa horizontal sem atrito. Ambas molas tem constante elástica k e estão inicialmente relaxadas.

(a) Se a partícula é puxada de uma distância x ao longo da direção perpendicular a configuração inicial das molas, como mostra a figura (1), mostre que a força exercida pelas molas sobre a partícula é


$$\mathbf{F} = -2kx \left(1 - \frac{L}{\sqrt{x^2 + L^2}} \right) \hat{\mathbf{i}}$$

(b) Determine a quantidade de trabalho feito por essa força para mover a partícula de $x = A$ para $x = 0$.

(c) Determine a energia potencial $U(x)$ do sistema quando a partícula é puxada de uma distância x , como no item (a).

(d) Faça um gráfico de $U(x)$ por x e identifique todos os pontos de equilíbrio.

(e) Se a partícula é puxada até $x = A$ e então solta, qual é a sua velocidade quando ela passa pelo ponto de equilíbrio $x = 0$?

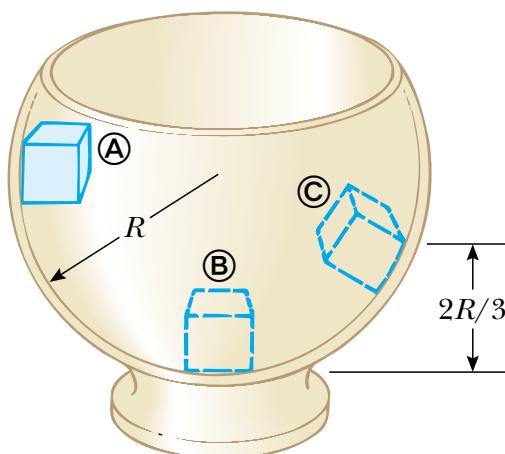


Figura 1: Vista superior da mesa

Problema 2: Dois nadadores, Alan e Beth, começam a nadar juntos do mesmo ponto da margem de um riacho largo, que flui com uma velocidade v . Ambos movem-se com mesma velocidade c ($c > v$), relativa a água. Alan nada descendo o riacho de uma distância L e então sobe o riacho na mesma distância. Beth nada tal que seu movimento relativo a Terra é perpendicular às margens do riacho. Ela nada a distância L e então retorna na mesma distância, de modo que ambos nadadores retornam ao ponto inicial. Qual nadador retorna primeiro? Justifique com base nos estudos de movimento relativo e referenciais.

Problema 3: Um bloco de gelo de massa m é largado do repouso num ponto A ao longo do diâmetro horizontal no interior de um vaso hemisférico rugoso de raio R , como mostra a figura (2).

- (a) Qual é a energia potencial gravitacional quando o bloco está no ponto A relativa ao ponto B?
- (b) Sabendo que v_B é a velocidade do bloco no ponto B, qual é o trabalho devido a cada força no trajeto de A para B?
- (c) Quanta energia mecânica foi transformada em energia interna quando o bloco de move de A para C?
- (d) É possível determinar o coeficiente de atrito através desses resultados de alguma maneira simples? Explique.

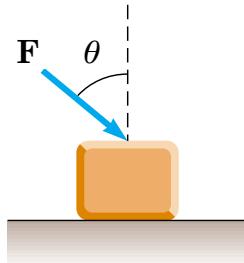


Figura 2: Vista lateral do vaso

Problema 4: Uma força \mathbf{F} age sobre um bloco de massa M que permanece sobre uma superfície horizontal rugosa com coeficiente de atrito μ , como mostra a figura (3).

(a) Assumindo que $F \gg Mg$, encontre o ângulo máximo θ no qual a força F não pode fazer o bloco deslizar, não importando quão grande ela seja.

(b) Encontre a razão F/Mg em termos de θ e μ tal que o bloco permanece na iminência do deslizamento. Mostre que a resposta reduz-se aquela do item (a) no limite de $F \gg Mg$.

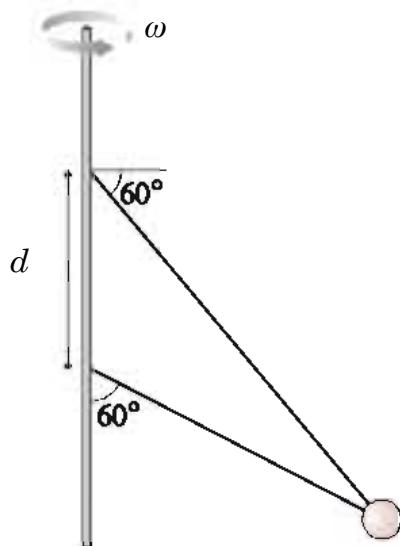


Figura 3: Bloco sobre superfície rugosa

Problema 5: Dois fios, de mesmo comprimento, estão amarrados a uma esfera de massa m que gira em torno do eixo vertical com a velocidade angular ω , como mostra a figura (4).

(a) Nessa situação, determine a tensão em cada fio?

(b) Qual deve ser a velocidade angular ω para que as tensões sejam iguais?

Figura 4: Esfera amarrada por dois fios.