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Cap. 7 - Momento Linear e Impulso
Prof. Elvis Soares

Consideremos o seguinte problema: ao atirar um projétil de um canhão qual será a velocidade
de recuo do mesmo?

Essa é uma pergunta muito dif́ıcil de ser respondida utilizando-se as Leis de Newton devido à
falta de informação incial do problema.

1 Momento Linear

Consideremos um sistema de duas part́ıculas isoladas com massas m1 e m2, com velocidades ~v1
e ~v2 respectivamente.

Da Terceira Lei de Newton sabemos que as
forças de interação ~F1(2) e ~F2(1) forma um par

ação-reação ~F1(2) = −~F2(1), de modo que

~F1(2) + ~F2(1) = 0

e usando a Segunda Lei de Newton, podemos
escrever

m1~a1 +m2~a2 = 0

m1
d~v1
dt

+m2
d~v2
dt

= 0

como m1 e m2 são constantes ao longo do tempo:

d(m1~v1)

dt
+
d(m2~v2)

dt
= 0

e com isso

d

dt
(m1~v1 +m2~v2) = 0 (1)

Assim, como a derivada é nula, m1~v1 + m2~v2 deve ser uma grandeza conservada durante todo
o processo de interação entre os corpos, independendo de qual tipo de interação ocorre.
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2 CONSERVAÇÃO DO MOMENTO LINEAR

O momento linear é definido pelo produto da massa pela velocidade de um corpo, sendo
assim uma grandeza vetorial, com direção e sentido, cujo módulo é o produto da massa pelo
módulo da velocidade, e cuja direção e sentido são os mesmos da velocidade.

~p := m~v (2)

e em termos de componentes cartesianas é escrito como

px = mvx, py = mvy e pz = mvz (3)

A Segunda Lei de Newton pode também ser escrita utilizando-se o momento linear na sua
composição. De fato, sabemos que

∑
~F = m~a = m

d~v

dt

e usando o fato que m é constante para um corpo qualquer, então
∑ ~F = d(m~v)/dt e assim

∑
~F =

d~p

dt
(4)

Portanto, a taxa de variação do momento linear de uma part́ıcula é igual a soma das forças
que atuam sobre ela, ou seja, igual a força resultante que nela atua.

2 Conservação do Momento Linear

Voltando à Eq.(1), e usando a definição do momento linear, podemos escrever agora que:

d

dt
(~p1 + ~p2) = 0

e denominando ~p1 + ~p2 ≡ ~ptot, isto é, o momento linear total do sistema de duas part́ıculas,
temos

~ptot = ~p1 + ~p2 = constante

que equivale a dizer que

~p1,i + ~p2,i = ~p1,f + ~p2,f (5)

O momento linear total de duas part́ıculas é conservado quando há somente forças de interação
mútuas entre elas.
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2 CONSERVAÇÃO DO MOMENTO LINEAR

Exemplo: Explosão em dois fragmentos

Consideremos uma explosão de um corpo de massa M em dois fragmentos de massa m1 e m2,
de modo que m1 +m2 = M , conforme a figura.

Queremos determinar qual a relação entre ~v′2 e ~v′1 imediatamente após a explosão. Para isso,
vamos lembrar o fato que após a explosão ambos os fragmentos são empurrados mutuamente, de
modo que a força total sobre o sistema m1 +m2 é nula, e o momento linear total é conservado.∑

~Fsis = 0 ⇒ ~ptot,i = ~ptot,f

calculando os momentos lineares totais antes e depois da explosão, temos

0 = m2v
′
2 −m1v

′
1 (6)

e assim

v′2 =
m1

m2

v′1 (7)

Vamos agora calcular as energias cinéticas antes e depois da explosão, como segue

Ki = 0

Kf =
m1v

′
1
2

2
+
m2v

′
2
2

2
=
m1v

′
1
2

2

(
1 +

m1

m2

)
Vemos então que Kf > 0, e assim ∆K > 0, que nos diz que a energia cinética é criada durante
a explosão.

∆K =
m1v

′
1
2

2

(
1 +

m1

m2

)
(8)

Desafio: De onde surge a energia cinética, uma vez que a energia total do sistema tem que se
conservada?
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3 IMPULSO

3 Impulso

Vimos anteriormente, a partir da segunda Lei de Newton, que ~FR = d~p/dt, e podemos integral
essa equação durante o intervalo de tempo em que atua tal força, onde

∫ tf

ti

~FRdt =

∫ tf

ti

d~p

dt
dt

e a última integral pode facilmente ser efetuada como

∫ tf

ti

~FRdt = ~pf − ~pi = ∆~p (9)

Assim, temos uma grandeza f́ısica relacionada ao momento linear que chamaremos de impulso.
O impulso ~I agindo em um corpo é uma grandeza vetorial que representa o total de força
aplicada a este corpo ~F em um dado intervalo de tempo ∆t = tf − ti, como expresso pela
seguinte equação

~I =

∫ tf

ti

~Fdt (10)

Desta forma, uma força que varia ao longo do tempo produz um impulso que é a área sob o
gráfico de força como funçao do tempo, conforme figura abaixo.

tfti

|~F |

t

Exemplo: Colisão entre duas bolas

Vamos considerar o problema de duas bolas de massas m1 e m2 em colisão, conforme mostra a
figura.
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4 SISTEMA DE PARTÍCULAS

Sabemos que durante a colisão, a bola 1 empurra a bola 2 para a direita e a bola 2 reage
empurrando a bola 1 para a esquerda, com ~F2(1) = −~F1(2), então os momentos lineares de
ambas deve estar relacionado via Segunda Lei de Newton

d~p1
dt

= ~F1(2) = −~F2(1) =
d~p2
dt

e integrando essas equações durante o tempo de colisão, temos o teorema do impulso para cada
bola independentemente: ∫ tf

ti

d~p1
dt
dt = ∆~p1 =

∫ tf

ti

~F1(2)dt = ~I1∫ tf

ti

d~p2
dt
dt = ∆~p2 =

∫ tf

ti

~F2(1)dt = ~I2

E da igualdade acima vemos que

∆(~p1 + ~p2) = 0 ⇔ ~I1 + ~I2 = 0 (11)

Assim, a soma do momento linear das duas bolas não varia durante a colisão pois a soma dos
impulsos entre ambas é nula. Fato que reafirma a conservação do momento linear durante
esse tipo de colisão.

4 Sistema de Part́ıculas

Para um sistema de part́ıcula, um conjunto de muitos corpos interagentes e sob à ação de
forças externas, o momento linear total do sistema será a soma de todos os momentos lineares
individuais de cada part́ıcula pertencente àquele.

~ptot = ~p1 + ~p2 + · · ·+ ~pn =
∑
i

~pi (12)

E usando a Segunda Lei de Newton:

d~ptot
dt

= ~FR,1 + ~FR,2 + · · ·+ ~FR,n =
∑
i

~FR,i

=
∑
i

~F
(int)
i +

∑
i

~F
(ext)
i (13)

As forças internas são canceladas aos pares devido à natureza do par ação-reação,
∑

i
~F
(int)
i = 0,

de modo que somente as forças externas produzem variação do momento linear total do sistema.

∑
i

~F
(ext)
i =

d~ptot
dt

(14)

Assim, num sistema de part́ıculas, a variação do momento linear total desse sistema
é devido à força externa total que age sobre esse mesmo sistema.

No caso em que a força externa total é nula, o momento linear total do sistema se conserva.
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4 SISTEMA DE PARTÍCULAS

∑
i

~F
(ext)
i = 0 ⇒ d~ptot

dt
= 0 (15)

Exemplo: Explosão em três fragmentos

Vamos considerar o problema de um corpo de massas M explodindo em três fragmentos de mas-
sas iguais lançados com velocidades de mesmo módulo v, e um dos fragmentos tem velocidade
na diração vertical para cima, conforme mostra a figura.

Como durante a explosão não existem
forças externas atuando sobre o sistema,
temos a conservação do momento linear

0 =
M

3
~v′1 +

M

3
~v′2 +

M

3
~v′3

que simplificando fica

0 = ~v′1 + ~v′2 + ~v′3
calculando o módulo de ~v′1, podemos escrever

v′21 = v′22 + v′23 + 2v′2v
′
3 cos θ

e como todos os fragmentos saem com o mesmo módulo da velocidade v′1 = v′2 = v′3, de modo
que cos θ = −1/2, e portanto

θ = 120◦ (16)

Assim, os três vetores momentos lineares formam geometricamente um triângulo equilátero,
conforme a figura a seguir.
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5 CENTRO DE MASSA

5 Centro de Massa

Podemos associar ao sistema um ponto espećıfico denominado centro de massa (ou simples-
mente C.M.), que seria a localização de toda a massa do sistema se concentrada num ponto
apenas.

M ~Rcm = m1~r1+m2~r2+· · ·+mn~rn =
∑
i

mi~ri

ou seja

~Rcm =

∑
imi~ri
M

(17)

onde M =
∑

imi é a massa total do sis-
tema e ~ri é o vetor posição da i-ésima
part́ıcula.

A velocidade do C.M. pode ser facilmente calculada por ~Vcm = d~Rcm/dt, então escrevemos

~Vcm =

∑
imi~vi
M

(18)

*Mostre!

sendo ainda escrito mais facilmente como M~Vcm =
∑

imi~vi =
∑

i ~pi = ~ptot.

Ou seja, o momento linear total do sistema é igual a sua massa total multiplicada
pela velocidade do seu C.M.

Também podemos determinar a aceleração do C.M. a partir de ~Acm = d~Vcm/dt, como:

~Acm =

∑
imi~ai
M

(19)

*Mostre!

e rearranjando, podemos escrever na forma M ~Acm =
∑

imi~ai =
∑

i
~FR,i =

∑
i
~F
(ext)
i .

Portanto, o centro de massa de um sistema de part́ıculas se move como uma
part́ıcula equivalente de massa M que se moveria sob à ação da força externa
total do sistema.

E se a força externa total é nula, há conservação do momento linear total, e o C.M. fica em
equiĺıbrio.

∑
i

~F
(ext)
i = 0 ⇒ ~ptot = M~Vcm = constante (20)
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5 CENTRO DE MASSA

Exemplo: Triângulo

Vamos considerar o problema de três part́ıculas de massas iguais que se encontram nos vértices
de um triângulo equilátero de lado l, conforme mostra a figura.

O vetor posição de cada part́ıcula nessa sis-
tema de coordenadas.

~r1 = 0x̂+ 0ŷ

~r2 = lx̂+ 0ŷ

~r3 =
l

2
x̂+

l
√

3

2
ŷ

O centro de massa dessa configuração pode ser calculado pela própria definição ~Rcm =∑
imi~ri/M , onde M é a soma das três massas.

~Rcm =
1

3m
(m~r1 +m~r2 +m~r3) (21)

Portanto, o centro de massa para um sistema de três part́ıculas de massas iguais que se encon-
tram nos vértices de um triângulo equilátero de lado l é

~Rcm =
l

2
x̂+

l
√

3

6
ŷ (22)
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5 CENTRO DE MASSA

Para um corpo sólido, para o qual tem-se uma distribuição cont́ınua de massa com dm = ρdV ,
as somas indicadas nas equações do centro de massa devem ser substitúıdas por integrais. Para
um corpo homogêneo, o centro de massa coincide com o centro geométrico; quando um corpo
possui um eixo de simetria, o centro de massa está sempre situado nesse eixo; e não há nada
que obrigue o centro de massa estar na parte maciça do corpo.

Exemplo: Chapa Furada

Vamos considerar o problema de uma chapa homogênea circular de raio R tem um pedaço
circular de raio R/2 retirado, conforme mostra a figura.

O vetor posição do C.M do disco inteiro sem o furo era ~rdisco =
0, enquanto que o vetor posição do C.M do furo é ~rfuro =
(R/2)x̂.
A massa do disco inteiro sem o furo era mdisco = σ(πR2),
enquanto que a massa do furo é mfuro = −σ(πR2/4), que
deve ser negativa pois trata-se de um furo, e σ é a densidade
superficial de massa.

O centro de massa dessa chapa com o furo pode ser calculado pela definição ~Rcm =
∑

imi~ri/M ,
levando em consideração que a massa do furo é negativa, e assim

~Rcm = −R
6
x̂ (23)

*Mostre!
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5 CENTRO DE MASSA

Exemplo: Pescador e Canoa

Vamos considerar o problema de pescador de massa mp andando de uma extremidade a outra
de uma canoa de massa mc e comprimento l, conforme mostra a figura.

Enquanto o pescador anda sobre a canoa
não existem forças externas atuando so-
bre o sistema (pescador+canoa), isso des-
prezando a resistência da água ao movi-
mento da canoa, de modo que temos a con-
servação do momento linear

0 = mpvp −mcvc

que em termos da velocidade média, pode-
mos escrever

0 = mp
∆xp
∆t
−mc

∆xc
∆t

Assim, ficamos claramente com uma relação entre os deslocamentos do pescador e da canoa.

mp∆xp = mc∆xc (24)

Vemos então que para o momento linear total do sistema ser conservado, ao pescador andar
para a direita em direção à outra extremidade, a canoa anda para a esquerda na diração do
pescador. E além disso, os deslocamentos somados de ambos deve ser o próprio comprimento
da canoa.

∆xp + ∆xc = l (25)

Usando essas duas relações entre os delocamentos do pescador, ∆xp, e da canoa, ∆xc, podemos
determinar qual foi o deslocamento do pescador para ir de uma extremidade a outra da canoa:

∆xp =
mc

mc +mp

l (26)
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