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Consideremos o seguinte problema: ao atirar um projétil de um canhao qual serd a velocidade
de recuo do mesmo?

Essa é uma pergunta muito dificil de ser respondida utilizando-se as Leis de Newton devido a
falta de informacao incial do problema.

1 Momento Linear

Consideremos um sistema de duas particulas isoladas com massas m; e ms, com velocidades v;
e Uy respectivamente.

Da Terceira Lei de Newton sabemos que as
forcas de interagao Fiy e Fy(;) forma um par
acao-reacao ﬁl(g) = —ﬁg(l), de modo que

Fioy + Fyay =0

5 e usando a Segunda Lei de Newton, podemos
2 escrever
mlc_il + m262 =0
dv; dvy
my—— +mo—— =0
Yt 2 dt

como my e my sao constantes ao longo do tempo:

d(mﬂ_fl) d(mgﬁg) .
a T a

e com isso

d . .
—(mlvl + mQUQ) =0 (1)

dt

Assim, como a derivada é nula, m,v; + movs deve ser uma grandeza conservada durante todo
o processo de interacao entre os corpos, independendo de qual tipo de interacao ocorre.



2 CONSERVACAO DO MOMENTO LINEAR

O momento linear é definido pelo produto da massa pela velocidade de um corpo, sendo
assim uma grandeza vetorial, com dire¢ao e sentido, cujo moédulo é o produto da massa pelo

modulo da velocidade, e cuja direcao e sentido sao os mesmos da velocidade.

(2)

P i=mu

e em termos de componentes cartesianas € escrito como
(3)

Pz = MUz, Py = MUy € P, = TV,

A Segunda Lei de Newton pode também ser escrita utilizando-se o momento linear na sua

composicao. De fato, sabemos que

e usando o fato que m é constante para um corpo qualquer, entao » F= d(m7)/dt e assim

(4)

o dp
D F=—

Portanto, a taza de variagcio do momento linear de uma particula € igual a soma das forcas

que atuam sobre ela, ou seja, iqual a forca resultante que nela atua.

2 Conservacao do Momento Linear

Voltando a Eq., e usando a definicao do momento linear, podemos escrever agora que:

d
(5 +5) =0
dt(pl + )

e denominando p; + Po = pPiot, iSto é, 0 momento linear total do sistema de duas particulas,

temos
Dot = P1 + Po = constante

que equivale a dizer que
(5)

Pl + D2 = D1,y + Doy

O momento linear total de duas particulas é conservado quando ha somente forcas de interacao

mutuas entre elas.



2 CONSERVACAO DO MOMENTO LINEAR

Exemplo: Explosao em dois fragmentos

Consideremos uma explosao de um corpo de massa M em dois fragmentos de massa m; e mso,
de modo que my + my = M, conforme a figura.

M mq mo
O wC€D3
74 oA
T

Antes Depois

Queremos determinar qual a relagdo entre 75, e ¢ imediatamente apds a explosao. Para isso,
vamos lembrar o fato que apds a explosao ambos os fragmentos sao empurrados mutuamente, de
modo que a forga total sobre o sistema m + ms é nula, e 0 momento linear total é conservado.

Z Fsis =0 = ﬁtot,i = ﬁtot,f

calculando os momentos lineares totais antes e depois da explosao, temos

0 = maouvy — My} (6)
e assim
’ mq ’
Vo = — 7
b= T 7

Vamos agora calcular as energias cinéticas antes e depois da explosao, como segue

mv'? movt:  myv)? m
K, = ™% 2 _ MY () M

2 2 2 Mo
Vemos entao que Ky > 0, e assim AK > 0, que nos diz que a energia cinética é criada durante
a explosao.

72
AK:mM-Q+TQ (8)

2 meo

Desafio: De onde surge a energia cinética, uma vez que a energia total do sistema tem que se
conservada?



3 IMPULSO

3 Impulso

Vimos anteriormente, a partir da segunda Lei de Newton, que F r = dp/dt, e podemos integral
essa equacao durante o intervalo de tempo em que atua tal forca, onde

ty . ty d—*
/ Frdt = / P 1t

2

e a ultima integral pode facilmente ser efetuada como

ty .
/ Fdt = iy — i, = AF (9)
t;

Assim, temos uma grandeza fisica relacionada ao momento linear que chamaremos de impulso.
O impulso I agindo em um corpo é uma grandeza vetorial que representa o total de forga
aplicada a este corpo F em um dado intervalo de tempo At = ty —t;, como expresso pela
seguinte equacao

. tr
I:/ Fdt (10)
t;

Desta forma, uma forca que varia ao longo do tempo produz um impulso que é a area sob o
grafico de forca como funcao do tempo, conforme figura abaixo.

|F|

Exemplo: Colisao entre duas bolas

Vamos considerar o problema de duas bolas de massas m e msy em colisao, conforme mostra a

figura.
mq . . mo . miq mo .
( ) b1 b2 ( ) p1< ) ( ) P2

Antes Depois



4 SISTEMA DE PARTICULAS

Sabemos que durante a colisao, a bola 1 empurra a bola 2 para a direita e a bola 2 reage

empurrando a bola 1 para a esquerda, com F5;) = —Fj), entao os momentos lineares de

ambas deve estar relacionado via Segunda Lei de Newton
dpy = = dpa
dt 1(2) 2(1)

e integrando essas equacoes durante o tempo de colisao, temos o teorema do impulso para cada

bola independentemente:
ty d—’ ty . .
/ Lt — A, :/ Figdt =1,
t; t;

dt
ty d—* ty . .
/ ﬂdt = Aﬁg = / FQ(l)dt = _[2
t; dt t;
E da igualdade acima vemos que
A@ +P)=0 & L+L=0 (11)

Assim, a soma do momento linear das duas bolas nao varia durante a colisdo pois a soma dos
impulsos entre ambas é nula. Fato que reafirma a conservagao do momento linear durante
esse tipo de colisao.

4 Sistema de Particulas

Para um sistema de particula, um conjunto de muitos corpos interagentes e sob a acao de
forcas externas, o momento linear total do sistema serd a soma de todos os momentos lineares
individuais de cada particula pertencente aquele.

Pt =P+ Pt +P=> B (12)

d - 2 E usando a Segunda Lei de Newton:
F(znt) (eat)
2(1 ~(ex
(1) F
ﬁ(int) dﬁtot . F; F; F; . F—,‘
. 1(2) . R1+ fRo+ -+ R,n—z Rji
Fl(ezt) i

1 . _ Zﬁ;(int) + ZF’;(ext) (13>

. . D1y ~ ~ A (int
As forgas internas sao canceladas aos pares devido a natureza do par acao-reacao, Fi(m ) = 0,
de modo que somente as forcas externas produzem variagao do momento linear total do sistema.

—(ex d_’o
SR =S 4

i

Assim, num sistema de particulas, a variagcao do momento linear total desse sistema
é devido a forca externa total que age sobre esse mesmo sistema.

No caso em que a for¢a externa total é nula, o momento linear total do sistema se conserva.



4 SISTEMA DE PARTICULAS

i dﬁtot
F'(EXt) 0 = =0 15

Exemplo: Explosao em trés fragmentos

Vamos considerar o problema de um corpo de massas M explodindo em trés fragmentos de mas-
sas iguais langados com velocidades de mesmo modulo v, e um dos fragmentos tem velocidade
na diracao vertical para cima, conforme mostra a figura.

Como durante a explosao nao existem
forcas externas atuando sobre o sistema,
temos a conservacao do momento linear

M
Y
O ) ) M, M, M,
i

0 que simplificando fica

=3/
51

Antes Depois 0="7, + 0+

calculando o médulo de 7], podemos escrever

v = v 4+ vE + 20jv5 cos

e como todos os fragmentos saem com o mesmo moédulo da velocidade v; = v}, = v}, de modo
que cosf = —1/2, e portanto
0 =120° (16)

Assim, os trés vetores momentos lineares formam geometricamente um triangulo equildtero,
conforme a figura a seguir.

D1 .
D2
NN 7
D2 b3 Ps
120°



5 CENTRO DE MASSA

5 Centro de Massa

Podemos associar ao sistema um ponto especifico denominado centro de massa (ou simples-
mente C.M.), que seria a localizagdo de toda a massa do sistema se concentrada num ponto
apenas.

MRcm = m1F1+m2FQ+' . -—l—mnFn = E mlﬁ
i

ou seja

* . — Z mlﬁ
Ry = =—— 17
- (1)

onde M = >, m; é a massa total do sis-
tema e 7; é o vetor posicao da i-ésima
particula.

(18)

*Mostre!
sendo ainda escrito mais facilmente como MV = > . mits; = D, Pi = Diot.-

Ou seja, o momento linear total do sistema é igual a sua massa total multiplicada
pela velocidade do seu C.M.

Também podemos determinar a aceleracao do C.M. a partir de A = dVi, /dt, como:

(19)

*Mostre!
. — 5 — — t
e rearranjando, podemos escrever na forma M A, =Y . md; = >, Fr, =Y. ﬂ(ex ),

Portanto, o centro de massa de um sistema de particulas se move como uma
particula equivalente de massa M que se moveria sob a acao da forga externa
total do sistema.

E se a forca externa total é nula, ha conservacao do momento linear total, e o C.M. fica em
equilibrio.

Z ﬁi(ext) =0 = Pt = MV, = constante (20)




5 CENTRO DE MASSA

Exemplo: Triangulo

Vamos considerar o problema de trés particulas de massas iguais que se encontram nos vértices
de um triangulo equildtero de lado [/, conforme mostra a figura.

O vetor posicao de cada particula nessa sis-

2’ tema de coordenadas.
v A Lo o= 0505
‘ C.M = 13 +07
: ey l V3
1 & 2 M = —& 4+ —1
T3 2x+ 5 Y

O centro de massa dessa configuracao pode ser calculado pela propria defini¢ao ﬁcm
>, myT; /M, onde M é a soma das trés massas.

~ 1
Rcm = %(mf’l +mr_"g —f-m’l?g) (21)

Portanto, o centro de massa para um sistema de trés particulas de massas iguais que se encon-
tram nos vértices de um triangulo equilatero de lado [ é

B I
Ron = 58+ %gg (22)




5 CENTRO DE MASSA

Para um corpo sdélido, para o qual tem-se uma distribuicao continua de massa com dm = pdV,
as somas indicadas nas equagoes do centro de massa devem ser substituidas por integrais. Para
um corpo homogéneo, o centro de massa coincide com o centro geométrico; quando um corpo
possui um eixo de simetria, o centro de massa estd sempre situado nesse eixo; e nao ha nada
que obrigue o centro de massa estar na parte maciga do corpo.

Exemplo: Chapa Furada

Vamos considerar o problema de uma chapa homogénea circular de raio R tem um pedago
circular de raio R/2 retirado, conforme mostra a figura.

O vetor posicao do C.M do disco inteiro sem o furo era 7gisco =
0, enquanto que o vetor posicao do C.M do furo é 7, =

(R/2)%.
A massa do disco inteiro sem o furo era mgisco = o(TR?),
enquanto que a massa do furo é myp,, = —o(rR?*/4), que

deve ser negativa pois trata-se de um furo, e o é a densidade
superficial de massa.

O centro de massa dessa chapa com o furo pode ser calculado pela defini¢do Ren, = ), my7; /M,
levando em consideracao que a massa do furo é negativa, e assim

Rem = —=1% (23)

*Mostre!



5 CENTRO DE MASSA

Exemplo: Pescador e Canoa

Vamos considerar o problema de pescador de massa m, andando de uma extremidade a outra
de uma canoa de massa m,. e comprimento [/, conforme mostra a figura.

y‘ Enquanto o pescador anda sobre a canoa

nao existem forcas externas atuando so-

bre o sistema (pescador+canoa), isso des-

. & Az, . Az, 5 prezando a resisténcia da dgua ao movi-

Inicio ’ : mento da canoa, de modo que temos a con-
servacao do momento linear

T

0 = myv, — M,

que em termos da velocidade média, pode-
m, mos escrever

Fim

Assim, ficamos claramente com uma relacao entre os deslocamentos do pescador e da canoa.

mpAx, = m.Az, (24)

Vemos entao que para o momento linear total do sistema ser conservado, ao pescador andar
para a direita em direcao a outra extremidade, a canoa anda para a esquerda na diracao do
pescador. E além disso, os deslocamentos somados de ambos deve ser o préprio comprimento
da canoa.

Az, + Az, =1 (25)

Usando essas duas relagoes entre os delocamentos do pescador, Az, e da canoa, Az., podemos
determinar qual foi o deslocamento do pescador para ir de uma extremidade a outra da canoa:

Ag,=—"°c | (26)

Me + My

10
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