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1 Energia Potencial

A energia potencial é o nome dado a forma de energia quando está “armazenada”, isto é, que
pode a qualquer momento manifestar-se, por exemplo, sob a forma de movimento.

Além disso, a energia potencial está relacionada com a posição que o determinado corpo ocupa
no espaço devido a sua interação com outros corpos.

1.1 Energia Potencial Gravitacional

Energia associada a altura (posição) do corpo com relação à Terra (ou outro corpo gravitacio-
nal).

Exemplo: Corpo em Queda Livre

Consideremos um corpo em queda livre, que cai
de uma altura y1 até uma altura y2.

Wgrav =

∫ 2

1

~Fgrav·d~r =

∫ y2

y1

(−mg)dy = −mg(y2−y1)

de modo que o trabalho da força peso é dado
por

Wgrav = mg(y1 − y2) (1)

Assim, podemos definir uma energia associada com a altura do objeto com relação ao solo como
sendo:

Ugrav := mgy (2)

Desta forma, podemos escrever o trabalho da força peso, como visto no exemplo, na forma

Wgrav = Ui − Uf = −(Uf − Ui) = −∆Ugrav ⇒

{
∆Ugrav > 0 subida

∆Ugrav < 0 descida
(3)
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1.1 Energia Potencial Gravitacional 1 ENERGIA POTENCIAL

no caso em que a única força que atua no corpo é a força peso, então se a força resultante
for apenas a força peso, temos

WR = Wgrav = ∆K = −∆Ugrav ⇒ Kf −Ki = −(Uf − Ui)

então

Ki + Ui = Kf + Uf

Ou seja, algo se conserva, sendo essa soma de K + Ugrav o que denominaremos de energia
mecânica:

E := K + Ugrav (4)

Voltando...

Durante o movimento de queda livre, podemos notar que a nergia mecânica é mantida constante
durante a descida do corpo desde a altura y1 até y = 0.

Tal resultado é important́ıssimo, uma vez que pode ser entendido como uma mudança de
energia, a energia potencial gravitacional está sendo convertida em energia cinética durante a
queda!
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1 ENERGIA POTENCIAL 1.2 Energia Potencial Elástica

1.2 Energia Potencial Elástica

Energia armazenada num corpo deformável, dito elástico. Obedecendo a famosa lei de Hooke.

Exemplo: Mola Esticada

Consideremos uma mola sendo esticada de uma
posição x1 até x2.

Wel =

∫ 2

1

~Fel·d~r =

∫ x2

x1

(−kx)dx = −k
(
x2
2

2
− x2

1

2

)
de modo que o trabalho da força elástica é dado
por

Wel =
kx2

1

2
− kx2

2

2
(5)

Assim, podemos definir uma energia associada com a deformação da mola com relação ao seu
comprimento natural como sendo:

Uel :=
kx2

2
(6)

Desta forma, podemos escrever o trabalho da força elástica, como visto no exemplo, na forma

Wel = Ui − Uf = −(Uf − Ui) = −∆Uel ⇒

{
∆Uel > 0 esticando

∆Uel < 0 comprimindo
(7)

no caso em que a única força que atua no corpo é a força elástica, então se a força resultante
for apenas a força elástica, temos

WR = Wel = ∆K = −∆Uel ⇒ Kf −Ki = −(Uf − Ui)

então

Ki + Ui = Kf + Uf

Ou seja, nesse caso a energia mecânica é:

E := K + Uel (8)
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1.2 Energia Potencial Elástica 1 ENERGIA POTENCIAL

Voltando...

Durante a compressão da mola, a energia mecânica fica constante durante todo o processo desde
a posição x2 até x1.

Novamente esse resultado é important́ıssimo, uma vez que pode ser entendido como uma mu-
dança de forma da energia, a energia potencial elástica está sendo convertida em energia cinética
durante a queda!

No caso mais geral, onde há mais forças além da força peso e da força elástica, podemos calcular
o trabalho total como

WTotal = Wgrav + Wel + Wdemais = ∆K (9)

usando que Wgrav = −∆Ugrav e Wel = −∆Uel, podemos escrever

Ki + Ugrav,i + Uel,i + Wdemais = Kf + Ugrav,f + Uel,f

*Mostre!

Ki + Ui + Wdemais = Kf + Uf

onde U agora é a energia potencial total, ou seja:

U := Ugrav + Uel (10)

de modo que a equação anterior pode ser escrita mais compactamente como sendo:

Wdemais = ∆K + ∆U = ∆(K + U) = ∆E (11)

Portanto, a variação da energia mecânica de um sistema é resultante do trabalho de forças que
são ditas não-conservativas.
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2 FORÇAS CONSERVATIVAS

2 Forças Conservativas

Dizemos que uma força ~F é conservativa quanto o trabalho realizado por ela é independente
do caminho realizado. Neste caso, ele depende apenas dos extremos (posições inicial e final) e
representa a diferença de energia potencial entre eles.

Exemplo: Movimento sob a ação da gravidade

Imaginemos um corpo em movimento sobre
um determinado caminho, conforme a figura.
O trabalho da força peso é calculado por

Wgrav =

∫ f

i

~Fpeso · d~r

onde ~Fpeso = −mgŷ e d~r = dxx̂ + dyŷ + dzẑ,
de modo que

~Fpeso·d~r = (−mgŷ)·(dxx̂+dyŷ+dzẑ) = −mgdy

Portanto, o trabalho da força peso pode ser calculado facilmente como

Wgrav = −mg

∫ yf

yi

dy = −mg(yf − yi) = −∆Ugrav

Assim, o trabalho da força peso independe do caminho percorrido, sendo ela uma força conser-
vativa!

Então, como exemplo de forças conservativas temos a força peso, a força elástica e a força
eletrostática.

Dessa forma, podemos definir a energia potencial de uma força conservativa como

U(P ) := −
∫ P

P0

~F · d~r onde U(P0) = 0 (12)

de tal maneira que o ponto P0 é escolhido como sendo o ponto no qual a energia potencial
associada a força ~F é nula.
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3 FORÇAS NÃO-CONSERVATIVAS

Vamos agora investigar o fato que para uma força conservativa o trabalho independe do caminho
realizado. Para isso, vamos imaginar um bloco de massa m sobre a superf́ıcie de dois planos
C1 e C2, conforme figura.

Então, considerando uma força conservativa (como a força peso), podemos dizer que

∫ P2

P1

(C1)

~F · d~r =

∫ P2

P1

(C2)

~F · d~r = −∆U (13)

e lembrando que
∫ b

a
= −

∫ a

b
, podemos dizer que

∫ P2

P1

(C1)

~F · d~r +

∫ P1

P2

(C2)

~F · d~r = 0

que equivale a percorrer o caminho fechado (C) = (C1) ∪ (C2), de modo que podemos escrever
essa integral numa forma mais compacta, usando o conceito de integral fechada, como

∮
C

~F · d~r = 0 (14)

Assim, uma força conservativa deve respeitar essa relação acima, ou seja, o trabalho de uma
força conservativa num circuito fechado é nulo!

3 Forças Não-Conservativas

O trabalho de uma força não-conservativa depende do caminho percorrido. De modo que, para
esse tipo de força, podemos dizer que o trabalho realizado num circuito fechado é não-nulo, de
fato

∮
C

~F · d~r 6= 0 (15)

Como exemplo de forças não-conservativas temos a força de atrito e a força de resitência do ar.
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4 Conservação da Energia Mecânica

Vamos considerar o caso de um sistema (ou corpo) sujeito à ação de diversas forças, então
sabemos que podemos escrever

Wtotal =
∑
i

W
(C)
i +

∑
i

W
(NC)
i = ∆K

ou seja, separamos os trabalhos das forças conservativas e das forças não-conservativas. Essa
separação é útil uma vez que podemos escrever

W
(C)
i = −∆Ui

e ainda, escrevemos a energia potencial total associada às forças conservativas como U =
∑

i Ui,
e então

∑
i

W
(NC)
i = ∆K + ∆U = ∆(K + U)

*Mostre!

que é facilmente indentificada como

∑
i

W
(NC)
i = ∆EM onde EM = K + U (16)

Logo, a variação da energia mecânica é igual ao trabalho das forças não-conservatvas.

5 Força como Gradiente da Energia Potencial

Vamos lembrar que a energia potencial é uma função da posição dada por

U(x) = −
∫ x

x0

F (x)dx (17)

e usando o teorema fundamental do cálculo 1 , podemos ”inverter”a integral usando

F (x) = −dU

dx
(18)

que no caso tridimensional passa a ser uma gradiente

~F = −~∇U = −∂U

∂x
x̂− ∂U

∂y
ŷ − ∂U

∂z
ẑ (19)

1O teorema fundamental do cálculo diz que F (x) =
∫
f(x′)dx′ quando f(x) = dF/dx.
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6 DISCUSSÃO QUALITATIVA DO MOVIMENTO SOB À AÇÃO DE FORÇAS
CONSERVATIVAS

Exemplo: Força Elástica

No caso da força elástica temos como energia potencial elástica U(x) = kx2/2, então

F (x) = −d(kx2/2)

dx
= −kx

Exemplo: Força Peso

No caso da força peso temos como energia potencial gravitacional U(y) = mgy, então

~F = −~∇(mgy) = −∂(mgy)

∂x
x̂− ∂(mgy)

∂y
ŷ − ∂(mgy)

∂z
ẑ = −mgŷ

6 Discussão Qualitativa do Movimento sob à Ação de

Forças Conservativas

Vamos analisar a relação entre a energia potencial e a força, à ela associada, graficamente.

Figura 1: Um exemplo de gráfico da energia potencial e da força, que é dada pela derivada
desse potencial Fx = −dU/dx.
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6 DISCUSSÃO QUALITATIVA DO MOVIMENTO SOB À AÇÃO DE FORÇAS
CONSERVATIVAS 6.1 Sentido da Força

6.1 Sentido da Força

Para determinar o sentido da força ~F = Fxx̂, podemos utilizar a relação entre essa componente
Fx e o potencial U , dada por

Fx = −dU

dx
(20)

Como exemplo, na posição x3 o sentido da força ~F é negativo, enquanto que na posição x5 o
sentido é positivo.

6.2 Posições de Equiĺıbrio

As posições de equiĺıbrio são aquelas nas quais a força associado ao potencial é nula, ou seja,
devemos ter

F (xeq) = − dU

dx

∣∣∣∣
xeq

= 0 (21)

Podemos classificar as posições de equiĺıbrio quanto ao tipo de equiĺıbrio presente

• estável: na posição x2 o equiĺıbrio é estável, uma vez que, a força na vizinhança desse
ponto é restauradora, sempre fazendo com que a part́ıcula volte a posição original x2

(associada a um mı́nimo de energia potencial).

• instável: na posição x4 o equiĺıbrio é instável, uma vez que, a força na vizinhança desse
ponto faz sempre com que a part́ıcula se afaste da posição original x4 (associada a um
máximo de energia potencial).

• indiferente: na posição x6 o equiĺıbrio é dito indiferente, uma vez que, a força na vizi-
nhança desse ponto é nula (associada a um platô de energia potencial).

6.3 Trabalho realizado

Para determinarmos o trabalho realizado por essa força associdada a essa energia potencial,
podemos utilizar a relação

W = −∆U (22)

Como exemplo, no delocamento da part́ıcula de x1 para x2 o trabalho realizado W1→2 pela
força é positivo, enquanto que no delocamento da part́ıcula de x3 para x4 o trabalho realizado
W3→4 pela força é negativo.
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6.4 Movimentos posśıveis
6 DISCUSSÃO QUALITATIVA DO MOVIMENTO SOB À AÇÃO DE FORÇAS

CONSERVATIVAS

6.4 Movimentos posśıveis

Para uma part́ıcula com uma dada energia mecânica EM , e com energia potencial dada por
U(x), a energia cinética pode ser obtida por

mv2

2
= EM − U(x) ≥ 0 (23)

A última condição vem do fato que a energia cinética é sempre positiva, de modo que, para que
a part́ıcula se mova numa região sujeita a esse potencial, devemos ter sempre

EM ≥ U(x) (24)

Vamos voltar ao nosso gráfico exemplo:

• quando a part́ıcula tem energia mecânica EM,1, ela só pode se mover entre as posições x1

e x3, pois para x > x3 a energia cinetica desta part́ıcula seria negativa, e chamamos essa
região de região proibida classicamente.

• quando a part́ıcula tem energia mecânica EM,2, ela só pode se mover para as posições x ≤
x3.5 e também para x ≥ x5, de modo que a região proibida classicamente é x3.5 < x < x5.

• quando a part́ıcula tem energia mecânica EM,3, ela só pode se mover em todas as posições
desde x1 até x6, de modo que não há região proibida classicamente para essa energia.
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