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Cap. 6 - Energia Potencial e Conservacao da

1 Energia Potencial

A energia potencial é o nome dado a forma de energia quando estd “armazenada’, isto é, que
pode a qualquer momento manifestar-se, por exemplo, sob a forma de movimento.

Além disso, a energia potencial esta relacionada com a posi¢ao que o determinado corpo ocupa
no espaco devido a sua interagao com outros corpos.

1.1 Energia Potencial Gravitacional

Energia associada a altura (posigao) do corpo com relagao a Terra (ou outro corpo gravitacio-
nal).

Exemplo: Corpo em Queda Livre

Consideremos um corpo em queda livre, que cai

m

de uma altura y; até uma altura ys.
mg ? vz
/ Wgrav - / Fgrav'dF: / (_mg>dy - _mg(yZ_yl)
1 Y1
(A1

i de modo que o trabalho da forca peso é dado

por
Y2
Wgrav = mg(yl - y2) (1)
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Assim, podemos definir uma energia associada com a altura do objeto com relagao ao solo como
sendo:

Ugrav =mgy (2)

Desta forma, podemos escrever o trabalho da forca peso, como visto no exemplo, na forma

AUgray > 0 subida

. (3)
AUgray < 0 descida

Weay = Ui = Uy = —(Uy = U;) = —AUgpay = {
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1.1 Energia Potencial Gravitacional 1 ENERGIA POTENCIAL

no caso em que a unica forga que atua no corpo é a forca peso, entao se a forga resultante
for apenas a forca peso, temos

Wi =Wgay = AK = =AUgray = Ky — K; = —(Uf - U;)
entao

Ou seja, algo se conserva, sendo essa soma de K + Ug,y 0 que denominaremos de energia
mecanica:

E = K + Ugayv (4)

Voltando...

Durante o movimento de queda livre, podemos notar que a nergia mecanica ¢ mantida constante
durante a descida do corpo desde a altura y; até y = 0.

m
U
(@) E=K+U
mg : :
: U 5 mgy
Y1 E E
Y2 | K = mv?/2
NV VANV NNV VNV 0 Y1 yr oy

Tal resultado é importantissimo, uma vez que pode ser entendido como uma mudanca de
energia, a energia potencial gravitacional esta sendo convertida em energia cinética durante a
quedal



1 ENERGIA POTENCIAL 1.2 Energia Potencial Elastica

1.2 Energia Potencial Elastica

Energia armazenada num corpo deformavel, dito elastico. Obedecendo a famosa lei de Hooke.

Exemplo: Mola Esticada

iz = 0 (mola relaxada)

N
N
N . o
\W\_ m Consideremos uma mola sendo esticada de uma
\\\\\\\?\\ YA posigéo:[;latéxQ_
T 2 . x9 33'2 .%'2
N 5 Wa = / Fo-dr = / (—kzx)dr = —k (—2 — —1)
N ' 1 1 2 2
s -
N ; de modo que o trabalho da forca elédstica é dado
NNV VN VY VNNV VNN
s por
| T

Wel:T_T (5)
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Assim, podemos definir uma energia associada com a deformagao da mola com relacao ao seu
comprimento natural como sendo:

Uel = — (6)

Desta forma, podemos escrever o trabalho da forca eldstica, como visto no exemplo, na forma

AUy > 0 esticando
AU, <0 comprimindo

Wa=U;—Uy=—(U; = U;) = —AUq = { (7)

no caso em que a unica forga que atua no corpo é a forca elastica, entao se a forga resultante
for apenas a forca elastica, temos

WR:WeleK:—AUel = Kf—Ki: —(Uf—UZ')
entao
K+ U = K; + Uy

Ou seja, nesse caso a energia mecanica é:

E =K+ Uy (8)




1.2 Energia Potencial Elastica 1 ENERGIA POTENCIAL

Voltando...

Durante a compressao da mola, a energia mecanica fica constante durante todo o processo desde
a posicao xro até .
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Novamente esse resultado é importantissimo, uma vez que pode ser entendido como uma mu-
danca de forma da energia, a energia potencial elastica esta sendo convertida em energia cinética
durante a queda!

No caso mais geral, onde ha mais forcas além da forca peso e da forca elastica, podemos calcular
o trabalho total como

WTotal = Wgrav + Wel + Wdemais =AK (9)

usando que Wypay = —AUgray € Wi = —AU,1, podemos escrever

K + Ugravi + Ueli + Waemais = K§ + Ugrav,f + Uel ¢

*Mostre!

Ki + Uz + Wdemais = Kf + Uf

onde U agora é a energia potencial total, ou seja:

U:= Ugrav + Uel (10)

de modo que a equagao anterior pode ser escrita mais compactamente como sendo:

Waemais = AK + AU = A(K + U) = AE (11)

Portanto, a variacao da energia mecanica de um sistema € resultante do trabalho de forcas que
sao ditas nao-conservativas.



2 FORCAS CONSERVATIVAS

2 Forcas Conservativas

Dizemos que uma forca F' é conservativa quanto o trabalho realizado por ela é independente
do caminho realizado. Neste caso, ele depende apenas dos extremos (posigoes inicial e final) e
representa a diferenca de energia potencial entre eles.

Exemplo: Movimento sob a acao da gravidade

Imaginemos um corpo em movimento sobre

A7y m um determinado caminho, conforme a figura.
: L O trabalho da forca peso é calculado por
o mg f
'*dT' Wgrav = / Fpeso -dr
_'/l—» y/L — '
mor-dr onde Fieso = —mgy e di = dzd + dyy + dzZ,
de modo que
Yr mg
TSy sss sy sy s s T T e ﬁpeso'dF: (—mgy)-(dzz+dyy+dzz) = —mgdy

Portanto, o trabalho da forca peso pode ser calculado facilmente como

ys
Wgrav = _mg/ dy = _mg(yf - yl) = _AUgraV

Yi
Assim, o trabalho da for¢a peso independe do caminho percorrido, sendo ela uma for¢a conser-

vatival

Entao, como exemplo de forcas conservativas temos a forca peso, a forca elastica e a forca
eletrostatica.

Dessa forma, podemos definir a energia potencial de uma forca conservativa como

U(P) :——/PpﬁwlF onde U(Fy) =0 (12)

de tal maneira que o ponto P, ¢é escolhido como sendo o ponto no qual a energia potencial
associada a forca F' é nula.



3 FORCAS NAO-CONSERVATIVAS

Vamos agora investigar o fato que para uma forca conservativa o trabalho independe do caminho
realizado. Para isso, vamos imaginar um bloco de massa m sobre a superficie de dois planos
C1 e (5, conforme figura.

P, NI

U1

Entao, considerando uma forga conservativa (como a forga peso), podemos dizer que

Py Py
/ F-dF:/ Fedi= —AU (13)
Py Py
(C1) (C2)
b a .
e lembrando que [ = — [*, podemos dizer que
Py
Py Py
/ F-df—l—/ F-dr= (@]
P, Py
(C1) (C2)
Co Py

que equivale a percorrer o caminho fechado (C') = (C) U (Cy), de modo que podemos escrever
essa integral numa forma mais compacta, usando o conceito de integral fechada, como

fﬁ-dfzo (14)

C

Assim, uma forca conservativa deve respeitar essa relacao acima, ou seja, o trabalho de uma
forca conservativa num circuito fechado é nulo!

3 Forcas Nao-Conservativas

O trabalho de uma forga nao-conservativa depende do caminho percorrido. De modo que, para
esse tipo de forca, podemos dizer que o trabalho realizado num circuito fechado é nao-nulo, de
fato

jfﬁdyf;éo (15)

C

Como exemplo de forcas nao-conservativas temos a forga de atrito e a forga de resiténcia do ar.
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4 Conservacao da Energia Mecanica

Vamos considerar o caso de um sistema (ou corpo) sujeito a acao de diversas forcas, entao
sabemos que podemos escrever

Wtotal = Z VVl(C) + Z VV,L'(NC) =AK

ou seja, separamos os trabalhos das forcas conservativas e das forgas nao-conservativas. Essa
separacao ¢ util uma vez que podemos escrever

w9 = AU,

e ainda, escrevemos a energia potencial total associada as forgas conservativas como U = ). U;,
e entao

S WY = AK + AU = A(K +U)

*Mostre!

que ¢ facilmente indentificada como

> WY = ABy onde Ey=K+U (16)

Logo, a variacao da energia mecéanica ¢ igual ao trabalho das forgas nao-conservatvas.

5 Forca como Gradiente da Energia Potencial

Vamos lembrar que a energia potencial é uma fungao da posicao dada por

e usando o teorema fundamental do CélculoF_-] , podemos "inverter”a integral usando

Fle) =5 (18)

que no caso tridimensional passa a ser uma gradiente

- ou,. oU . 0U,

F=-VU=-"i—-—j—— 1
VU 5 L ayy 5, - (19)

1O teorema fundamental do célculo diz que F(z) = [ f(2')dz’ quando f(z) = dF/dx.
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6 DISCUSSAO QUALITATIVA DO MOVIMENTO SOB A ACAO DE FORCAS
CONSERVATIVAS

Exemplo: Forca Elastica
No caso da forga elastica temos como energia potencial eldstica U(x) = kx?/2, entao

kx?/2)

F(z) = —d( P —kx

Exemplo: Forga Peso

No caso da forga peso temos como energia potencial gravitacional U(y) = mgy, entao

O(mgy) . A(mgy) i— d(mgy)

F==Vimgy) = - Oz oy 0z

zZ=—-mgy

6 Discussao Qualitativa do Movimento sob a Acao de
Forcas Conservativas

Vamos analisar a relagdo entre a energia potencial e a forga, a ela associada, graficamente.

U(x)

Figura 1: Um exemplo de gréafico da energia potencial e da forca, que é dada pela derivada
desse potencial F, = —dU/dx.
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CONSERVATIVAS 6.1 Sentido da Forga

6.1 Sentido da Forga

Para determinar o sentido da for¢ca F' = F,2, podemos utilizar a relacao entre essa componente
F, e o potencial U, dada por

aUu
F,=—— 20
o (20)
Como exemplo, na posicao x3 o sentido da forca Fé negativo, enquanto que na posicao s o
sentido é positivo.

6.2 Posicoes de Equilibrio

As posicoes de equilibrio sao aquelas nas quais a forca associado ao potencial é nula, ou seja,
devemos ter

du

F(xeq) = - r

—0 (21)

q

Podemos classificar as posigoes de equilibrio quanto ao tipo de equilibrio presente

e estavel: na posicao xy o equilibrio é estavel, uma vez que, a forca na vizinhanca desse
ponto é restauradora, sempre fazendo com que a particula volte a posicao original
(associada a um minimo de energia potencial).

e instavel: na posicao x4 o equilibrio é instavel, uma vez que, a forca na vizinhanca desse
ponto faz sempre com que a particula se afaste da posi¢ao original x, (associada a um
méximo de energia potencial).

e indiferente: na posicao xg 0 equilibrio é dito indiferente, uma vez que, a forga na vizi-
nhanca desse ponto é nula (associada a um platd de energia potencial).

6.3 Trabalho realizado

Para determinarmos o trabalho realizado por essa forca associdada a essa energia potencial,
podemos utilizar a relagao

W =—AU (22)

Como exemplo, no delocamento da particula de x; para xy o trabalho realizado W;_,, pela
forga é positivo, enquanto que no delocamento da particula de x3 para x4 o trabalho realizado
Ws_.4 pela forga é negativo.
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6.4 Movimentos possiveis CONSERVATIVAS

6.4 Movimentos possiveis

Para uma particula com uma dada energia mecanica E);, e com energia potencial dada por
U(z), a energia cinética pode ser obtida por

mu?

T = BEu—U(@) 20 (23)

A dltima condicao vem do fato que a energia cinética é sempre positiva, de modo que, para que
a particula se mova numa regiao sujeita a esse potencial, devemos ter sempre

Ey > U(x) (24)
Vamos voltar ao nosso grafico exemplo:

Ul(x)

En s

/\ En o

En

X1 X2 T3 X35 T4 X5 Te X

e quando a particula tem energia mecanica Ejy 1, ela s6 pode se mover entre as posicoes x;
e r3, pois para x > r3 a energia cinetica desta particula seria negativa, e chamamos essa
regiao de regiao proibida classicamente.

e quando a particula tem energia mecanica )y 2, ela s6 pode se mover para as posigoes x <
x35 € também para x > x5, de modo que a regiao proibida classicamente é x35 < x < x5.

e quando a particula tem energia mecanica Ej; 3, ela sé pode se mover em todas as posicoes
desde z; até xg, de modo que nao ha regiao proibida classicamente para essa energia.
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