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Sabemos que a Segunda Lei de Newton determina a aceleração ~a da part́ıcula a partir da força
resultante ~FR e, dessa forma, relaciona-se com a sua posição, sua velocidade e o dado instante
tempo.

m~a = ~FR = f(~r,~v, t) (1)

Assim, o principal problema da Dinâmica é determinar os movimentos posśıveis da part́ıcula
sob a ação de uma dada força ~F .

De fato, para resolver esse problema, devemos utilizar técnicas de resolução de eqs. diferenciais
de 2a ordem, uma vez que:

m~a = m
d~v

dt
= ~F

Será então que há outra maneira de obter uma relação entre a posição da part́ıcula e sua
velocidade?

1 Caso Unidimensional

Sabemos que certos movimentos são dif́ıceis de serem executados, mesmo que apliquemos a
mesma força durante todo o deslocamento. A dificuldade muita das vezes vem da distância
considerada para o deslocamento.

Assim, o trabalho associado a uma força qualquer para deslocar o corpo de A até B, denotado
por WA→B, pode ser definido como a área sob a curva da força em função da posição, como
mostra a figura abaixo.

Podemos calcular a área sob a curva usando uma aproximação grosseira de retângulos, de modo
que
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1 CASO UNIDIMENSIONAL

WA→B ≈
B∑
A

Wi =
B∑
A

F (xi)∆x

Notemos que ao aumentarmos o número de retângulos usados, ou seja, ao diminuirmos ∆x,
conseguimos uma melhor aproximação da área sob o gráfico, como mostra a figura abaixo.

De fato, no limite em que ∆x→ 0 teremos uma aproximação perfeita da área sob a curva, ou
seja, do trabalho realizado pela força.

WA→B ≡ lim
∆x→0

B∑
A

F (xi)∆x

Essa aproximação é conhecida matematicamente como a integral de Riemann, que é definida
como segue

WA→B :=

∫ B

A

F (x)dx (2)

Exemplo: Força Constante

Para uma força constante durante o deslocamento, podemos escrever

WA→B = F

∫ B

A

dx = F (xB − xA) = F∆x

Lembrando ainda da Segunda Lei de Newton, que nos diz que FR = ma = mdv
dt

, podemos
calcular o trabalho da força resultante da seguinte forma

WR
A→B =

∫ B

A

m
dv

dt
dx =

∫ B

A

m
dx

dt
dv =

∫ vB

vA

mvdv

onde usamos o fato que v = dx
dt

, no caso unidimensional, e facilmente integramos obtendo

WR
A→B =

mvB
2
− mvA

2

Podemos então definir uma nova grandeza que determina o trabalho realizado no corpo através
apenas de suas velocidades inicial e final.
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3 ENERGIA CINÉTICA

K =
mv2

2
(3)

de modo que a relação anterior é re-escrita compactamente na forma

WR
A→B = KB −KA = ∆K (4)

2 Trabalho

No caso mais geral, a força é um vetor tridimensional que pode ser escrito como ~F = Fxx̂ +
Fyŷ+Fz ẑ, enquanto o deslocamento infinitesimal realizado será dado por d~r = dxx̂+dyŷ+dzẑ.

O trabalho total associado a essa força durante um deslocamento do corpo de um ponto Pi =
(xi, yi, zi) a um ponto Pf = (xf , yf , zf ) pode ser calculado da melhor maneira usando o fato
que o trabalho é aditivo, então

Wif =

∫ xf

xi

Fxdx︸ ︷︷ ︸
Wx

+

∫ yf

yi

Fydy︸ ︷︷ ︸
Wy

+

∫ zf

zi

Fzdz︸ ︷︷ ︸
Wz

que podemos representar simplesmente como um produto escalar, dito ~F · d~r = Fxdx+Fydy +
Fzdz, e assim escrevemos o trabalho na forma mais geral posśıvel como

Wif =

∫ f

i

~F · d~r (5)

3 Energia Cinética
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