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1 Leis de Newton

Primeira Lei de Newton: Um corpo permanece em repouso ou com velocidade constante
(aceleração nula) quando isolado, isto é, quando a força total sobre ele é nula. Ou seja,

~a = 0 quando ~F = 0 (1)

Segunda Lei de Newton: A força total sobre um corpo é a responsável pela sua aceleração,
de modo que é o produto da massa do corpo vezes a aceleração:

~F = m~a (2)

Terceira Lei de Newton: Quando dois corpos interagem, a força ~FAB que o corpo B faz
sobre A, é igual e oposta à força ~FBA que o corpo A faz sobre B:

~FAB = −~FBA (3)

Figura 1: Um exemplo de par ação-reação, onde podemos notar que as forças não se cancelam
pois agem em corpos diferentes.

As duas primeiras leis são válidas somente quando observadas em referenciais não-acelerados.
De fato, quando estamos fazendo uma curva com um automóvel sentimos uma aceleração para
fora da curva, sem que exista uma força agindo sobre nós, pois o próprio referencial (o carro)
é um referencial acelerado.
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2 APLICAÇÕES DAS LEIS DE NEWTON

2 Aplicações das Leis de Newton

2.1 Equiĺıbrio de uma Part́ıcula

Para permanecer em equiĺıbrio, a força resultante que atua sobre uma part́ıcula deve ser
nula (Primeira Lei de Newton).

~FR = 0 ⇒
∑

~F = 0 ⇒
∑

Fx = 0,
∑

Fy = 0 e
∑

Fz = 0 (4)

Exemplo: Corpo Suspenso

Vamos considerar o problema de um bloco suspenso por dois fios (inextenśıveis e com massas
despreźıveis) presos ao teto, de modo a determinar a tensão sofrida por cada um desses fios,
como mostra figura abaixo.

A soma das forças que atuam no ponto P , o qual está em repouso, é obtida por∑
~F = 0 ⇒ ~T1 + ~T2 +M~g = 0

que em termos de componentes, com a ajuda do diagrama de forças, podemos escrever∑
Fx = 0 ⇒ −T1 cos θ1 + T2 cos θ2 = 0∑

Fy = 0 ⇒ +T1 sen θ1 + T2 sen θ2 −Mg = 0

Da primeira equação podemos tirar uma relação entre T2 e T1:

T2 =
cos θ1
cos θ2

T1
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2 APLICAÇÕES DAS LEIS DE NEWTON 2.2 Dinâmica de uma Part́ıcula

e usando esse resultado na segunda equação, teremos:

T1 =
Mg

sen θ1 + cos θ1 tg θ2

Obs: Para θ1 = θ2, temos

T1 = T2

2.2 Dinâmica de uma Part́ıcula

A força resultante sobre uma part́ıcula é igual ao produto da sua massa pela aceleração
impressa. (Segunda Lei de Newton).

~FR = m~a ⇒
∑

~F = m~a ⇒
∑

Fx = max,
∑

Fy = may e
∑

Fz = maz (5)

Exemplo: Máquina de Atwood

Vamos considerar o problema de dois blocos suspenso por um fio (inextenśıvel e com massa
despreźıvel) que passa por uma roldana presa ao teto, de modo a determinar as acelerações dos
blocos e a tensão sofrida pelo fio, como mostra figura abaixo.

As somas das forças que atuam sobre cada bloco, os quais estão acelerados, são obtidas por∑
~F1 = m1~a1 ⇒ ~T1 +m1~g = m1~a1∑
~F2 = m2~a2 ⇒ ~T2 +m2~g = m2~a2

3



2.2 Dinâmica de uma Part́ıcula 2 APLICAÇÕES DAS LEIS DE NEWTON

Além disso, sabemos que a1 = a2 = a pois o fio é inextenśıvel, e que T1 = T2 = T pois
o fio possui massa despreźıvel. Assim, podemos escrever as equações acima em termos de

componentes cartesianas
∑

Fy = may, como

T −m1g = m1a

T −m2g = m2(−a)

subtraindo uma equação da outra, obtemos

(m2 −m1)g = (m1 +m2)a

a =

(
m2 −m1

m1 +m2

)
g

De fato, se m2 > m1, temos a > 0 e a aceleração está no sentido indicado da figura, enquanto
que se m1 > m2, temos a < 0 e a aceleração aponta no sentido contrário.
Além disso, levando esse resultado de a em uma das equações, temos

T =

(
2m1m2

m1 +m2

)
g

Note que a tração no fio não é igual ao peso, isso se deve ao fato de existir um movimento
acelerado que requer uma força resultante agindo sobre os blocos.
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3 Forças de Atrito

Uma força de contato que atua sempre que dois corpos entram em contato e há tendência de
deslizamento. É gerada pela rugosidade das superf́ıcies dos corpos, conforme figura abaixo.

Figura 2: Um exemplo de contato entre superf́ıcies e a origem do atrito.

A força de atrito é sempre paralela às superf́ıcies em interação e contrária ao movimento relativo
entre elas.

3.1 Atrito Estático

Impede o movimento do objeto até um valor máximo de força resultante aplicada sobre o
mesmo.

fate ≤ µeN (6)

3.2 Atrito Cinético

Atua durante o deslizamento do corpo sobre a superf́ıcie.

fatc = µcN (7)

Figura 3: O módulo da força de atrito em função do módulo da força resultante aplicada sobre
o corpo.
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Exemplo: Plano Inclinado

Consideremos um bloco sobre um plano inclinado com atrito. Os coeficientes de atrito estático
e cinético são, respectivamente, µe e µc.

Vamos considerar primeiramente o caso em que o bloco fica estático sobre o plano innclinado,
tal que F não induz deslizamento sobre a superf́ıcie.∑

~F = ~F + ~N + ~fat +m~g = 0

que em termos de componentes, com a ajuda do diagrama de forças, podemos escrever∑
Fx = 0 ⇒ fat − F −mg sen θ = 0∑
Fy = 0 ⇒ N −mg cos θ = 0

Assim, a força de atrito estático é dada por

fat = F +mg sen θ

e lembrando que fate ≤ µeN , podemos escrever

F +mg sen θ ≤ µe(mg cos θ)

E assim, a força F deve obedecer a seguinte condição para que o bloco não delize sobre a
superf́ıcie.

F ≤ mg(µe cos θ − sen θ)

Agora, vamos estudar o caso em que o bloco desce com velocidade constante o plano incli-
nado. Dessa forma, as equações de dinâmica são idênticas as anteriores.
Assim, a força de atrito cinético é dada também pela equação

fat = F +mg sen θ

e lembrando que no caso de atrito cinético, tem-se fatc = µcN , podemos escrever

F +mg sen θ = µc(mg cos θ)

E portanto, a força F deve obedecer a seguinte condição para que o bloco deslize sobre a
superf́ıcie com velocidade constante.

F = mg(µc cos θ − sen θ)
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4 Dinâmica do Movimento Circular

Sabemos que durante um movimento circular, uma part́ıcula possui aceleração que aponta para
o centro da trajetória, que é a famosa aceleração centŕıpeta

~ac = ω2R(−r̂)

E de acordo coma a Segunda Lei de Newton, toda aceleração tem origem devido as forças que
atuam no corpo durante o movimento, de modo que na direção radial num movimento circular
devemos ter ∑

Fr = mac

Exemplo: Pêndulo cônico

Consideremos um corpo de massa m preso a um fio fixo no teto e posto a girar, como mostra
a figura abaixo. Vamos obter uma relação entre a velocidade angular de rotação e o ângulo θ
do fio com a vertical.

A força resultante sobre o corpo é ∑
~F = ~T +m~g = m~ac

usando o diagrama de forças, podemos decompor as forças na forma∑
Fx = ma ⇒ T sen θ = mac∑
Fy = 0 ⇒ T cos θ −mg = 0

Divindo uma equação pela outra temos uma relação entre a aceleração centŕıpeta e o ângulo θ,

então tg θ =
ac
g

=
ω2R

g
onde usamos que ac = ω2R, e olhando a figura podemos perceber que

R = l sen θ, de modo que podemos escrever:

ω =

√
g

l cos θ
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