
Capítulo 8

Indução Eletromagnética

Nesse capítulo, estudaremos como um campo magnético variável pode induzir uma f.e.m
num circuito, o grandioso fenômeno da indução eletromagnética, determinar a indutância
de alguns circuitos, calcular a energia armazenada no campo magnética e obter enfim as
famosas equações de Maxwell.

8.1 Lei de Lenz

Experimentos conduzidos por Michael Faraday na Inglaterra em 1831 e independente-
mente por Joseph Henry nos EUA no mesmo ano mostraram que uma f.e.m (força eletro-
motriz) pode ser induzida num circuito pela variação do campo magnético.

Primeiramente, vamos analisar qualitativamente o sentido da corrente induzida numa
espira devido a variação do fluxo magnético que atravessa a mesma, para isso consideremos
a situação em que um imã se move em direção a uma espira condutora, conforme figura.
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Quando o imã se aproxima da espira, conforme figura (a), o fluxo magnético externo
através da espira aumenta com o tempo. Para contrabalancear esse aumento de fluxo devido
ao campo dirigido para a direita, a corrente induzida produz seu próprio campo para a
esquerda, conforme figura (b), e assim, a corrente induzida está na direção indicada. Sabendo
que pólos iguais se repelem, concluímos que a face esquerda da espira age como um pólo
norte e a face direita como um pólo sul.
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Se o imã se move para a esquerda, conforme figura (c), seu fluxo através da área delimitada
pela espira diminui com o tempo. Agora a corrente induzida na espira está na direção
mostrada na figura (d) pois sua corrente produz um campo magnético na mesma direção do
campo externo. Nesse caso, a face esquerda da espira é um pólo sul e a face direita é um
pólo norte.

Essa interpretação física é conhecida como lei de Lenz e afirma que a corrente induzida
numa espira está na direção que cria um campo magnético que se opõe a mudança do fluxo
magnético através da área delimitada pela espira.

8.2 Indução de Faraday

Vamos agora descrever um experimento conduzido por Faraday e ilustrado na figura a
seguir. Uma bobina primária está conectada a uma chave e a uma bateria, estando enrolada
num anel de ferro, de tal forma que uma corrente na bobina produz um campo magnético
no metal quando a chave é fechada. Uma bobina secundária está também enrolada no anel
metálico e está conectada a um amperímetro, onde nenhuma bateria está conectada a ela,
e nem mesmo está conectada à bobina primária. Qualquer corrente detectada no circuito
secundário deve ser induzida por algum agente externo.

+
–

No instante que a chave é fechada, o amperímetro marca uma corrente numa certa direção
e então retorna ao zero. No instante em que a chave é aberta, o amperímetro marca a corrente
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numa direção oposta e retorna ao zero.
Finalmente, o amperímetro lê zero quando há ora uma corrente estacionária, ora nenhuma

corrente no circuito primário. A idéia principal desse experimento é que quando a chave é
fechada, a corrente no circuito primário produz um campo magnético que penetra o circuito
secundário, e o mesmo ocorre no momento em que a chave é aberta, de modo que o sentido
da corrente se opõe devido a lei de Lenz.

Como resultado dessas observações, Faraday concluiu que uma corrente elétrica pode
ser induzida num circuito pela mudança do campo magnético. A corrente induzida existe
somente num curto intervalo de tempo quando o campo magnético através da bobina secun-
dária está mudando. E uma vez que o campo magnético se torna estacionário, a corrente na
bobina secundária desaparece.

Em geral, a lei de indução de Faraday diz que a f.e.m induzida num circuito é dire-
tamente proporcional a taxa temporal da variação do fluxo magnético através do circuito, e
pode ser escrita como

E = �d�

B

dt

(8.1)

onde �

B

=

R
~

B · d ~

A é o fluxo magnético através do circuito.

Exemplo 8.1. Espira se movendo através de um Campo Magnético
Uma espira condutora retangular de dimensões l e w se move com velocidade v cons-

tante para a direita, conforme a figura. A espira atravessa um campo magnético uniforme
~

B dirigido para dentro da página numa extensão de 3w ao longo do eixo x.

◊ ◊ ◊ ◊ ◊

◊ ◊ ◊ ◊ ◊

◊ ◊ ◊ ◊ ◊

◊ ◊ ◊ ◊ ◊

◊ ◊ ◊ ◊ ◊

A figura (a) mostra o fluxo através da área de-
limitada pela espira como função de x. Antes
da espira entrar na região do campo, o fluxo é
zero. Conforme a espira entra no campo, o fluxo
aumenta linearmente com a posição até a late-
ral esquerda da espira estar justamente dentro do
campo. Finalmente, o fluxo através da espira de-
cresce linearmente para zero conforme a espira
deixa o campo.
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A figura (b) mostra a f.e.m induzida na espira como função de x. Antes da espira entrar
na região do campo, nenhuma f.e.m é induzida na espira. Conforme a aresta direita da
espira entra no campo, o fluxo magnético dirigido para dentro da página cresce, e de
acordo com a lei de Lenz, a corrente induzida é anti-horária pois deve produzir um campo
saindo da página, sendo a f.e.m induzida igual a �Blv. Quando a espira está inteiramente
no campo, a variação do fluxo é zero, e assim a f.e.m é nula. Quando a aresta direita da
espira deixa o campo, o fluxo diminui, uma corrente horária é induzida, e a f.e.m induzida
é Blv. E enquanto a aresta esquerda deixa o campo, a f.e.m diminui para zero.

Exemplo 8.2. Freio Magnético
Uma barra condutora de comprimento l e massa m se move em cima de dois trilhos

paralelos sem atrito na presença de um campo magnético uniforme dirigido para dentro
da página, conforme a figura. No instante inicial, a velocidade da barra é v0.
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Usando a lei de Lenz, vemos que conforme a barra
se movimenta para a direita, uma corrente no sen-
tido anti-horário se estabelece no circuito consis-
tindo da barra, os trilhos e um resistor R. O
fluxo magnético que atravessa o circuito depende
da posição da barra x, isto é �

B

= �Blx, com o
sinal negativo vindo do fato que a área está ori-
entada positivamente e o campo negativamente.

Desta forma, a variação do fluxo magnético neste mesmo circuito será

d�

B

dt

= �Bl

dx

dt

= �Blv

Usando a lei de Faraday podemos determinar a f.e.m induzida nesse circuito, uma vez
que há variação do fluxo magnético, de modo que E = Blv, e com a resistência do circuito
sendo R, a corrente induzida será

I =

Blv

R
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Como a energia tem de ser conservada no sistema, a taxa de energia cinética transferida
da barra é igual a taxa de energia transferia para o resistor. Então, P

resistor

= �P
barra

,
que podemos escrever como

R

✓
Blv

R

◆2

= �mv

dv

dt

que resolvendo para v em função de t teremos como solução

v(t) = v0e
�t/⌧

onde ⌧ é um tempo característico de decaimento da velocidade, dado por (Bl)

2
/mR.

Assim, devido o aumento do fluxo magnético, a corrente elétrica induzida faz com que a
barra freie e cesse o aumento do fluxo magnético enfim.

8.3 Lei de Faraday

Vimos que uma mudança no fluxo magnético induz uma f.e.m e uma corrente numa espira
condutora. Em nosso estudo de eletricidade, relacionamos a corrente a um campo elétrico
que aplica uma força em partículas carregadas. Da mesma maneira, podemos relacionar uma
corrente induzida numa espira condutora a um campo elétrico.

◊ ◊ ◊

◊ ◊ ◊◊

◊ ◊ ◊ ◊◊

◊ ◊ ◊ ◊◊

◊ ◊ ◊◊

◊ ◊ ◊

Podemos entender essa relação considerando uma
espira condutora de raio r situada num campo
magnético uniforme que é perpendicular ao plano
da espira, conforme figura. Se o campo magnético
varia no tempo, então, de acordo com a indução
de Faraday, uma f.e.m E = � d�

B

/ dt é induzida
na espira. A indução de uma corrente numa espira
implica a presença de um campo elétrico induzido
~

E, que deve ser tangente à espira pois essa é a di-
reção em que as cargas no fio se movem sob a ação
da força elétrica.

A f.e.m induzida em qualquer curva fechada pode ser expressa como E =

H
~

E · d~l. Em
casos mais gerais, E não deve ser constante, e o caminho pode não ser um círculo. Assim, a
lei de Faraday da indução pode ser escrita na forma geralI

~

E · d~l = �d�

B

dt

(8.2)

O campo elétrico induzido ~

E pela lei de Faraday é um campo não-conservativo que é
gerado pela variação do campo magnético. De fato, o campo elétrico induzido pela lei de
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Faraday é não-conservativo, uma vez que a integral
H
~

E · d~l 6= 0.

Exemplo 8.3. Campo Elétrico gerado por um Solenóide Infinito
Consideremos um solenóide muito longo de raio R possuindo n espirar por unidade de

comprimento que carrega uma corrente variável na forma I = I0 cos!t, onde I0 é o valor
máximo da corrente e ! é a frequência angular da corrente alternada.

Devido a simetria axial das linhas de campo ~

B

produzidas pelo solenóide, devemos usar a lei de
Faraday com o auxílio de amperianas na forma
circular. Por simetria, vemos que a intensidade
E do campo elétrico é constante nessa amperiana
e que ~

E é tangente a curva.

Usando coordenadas cilíndricas onde o eixo do
solenóide é o eixo z, temos

~

E = E(s)�̂

Para a região externa ao solenóide, utilizaremos uma amperiana de raio s > R por
onde passa um fluxo magnético igual a BA = B⇡R

2, e assimI
~

E · d~l = 2⇡sE(s) = � d

dt

(B⇡R

2
) = �⇡R

2dB

dt

e como o campo magnético no interior do solenóide é B = µ0nI, podemos substituir a
corrente I = I0 cos!t nessa relação e então substituir na equação acima como

2⇡sE(s) = �⇡R

2
µ0nI0

d

dt

(cos!t)

então

E(s > R) =

µ0nI0!R
2

2s

sen!t

Para a região interna ao solenóide, utilizaremos uma amperiana de raio s < R por
onde passa um fluxo magnético igual a BA = B⇡s

2, e assimI
~

E · d~l = 2⇡sE(s) = �⇡s

2dB

dt

= ⇡s

2
µ0nI0! sen!t

então

E(s < R) =

µ0nI0!

2

s sen!t
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Isso mostra que a intensidade do campo elétrico induzido varia de forma senoidal
devido à variação da corrente elétrica no solenóide. Assim, o campo elétrico induzido
depende da variação do campo magnético.

8.4 Indutância Mútua e Auto-Indutância

Sabemos que entre dois fios que conduzem correntes elétricas estacionárias existe uma
interação magnética, pois a corrente de um fio produz um campo magnético sobre a corrente
do outro fio. Porém, quando existe uma corrente variável em dos circuitos, ocorre uma
interação a mais!

Consideremos duas bobinas com número de espiras
N1 e N2, conforme figura ao lado. Pela bobina 1
passa uma corrente I1 que produz um campo mag-
nético ~

B1 e, portanto, um fluxo magnético através
da bobina 2, denominado �2. Quando a corrente I1
varia, o fluxo �2 também varia, e de acordo com a
lei de Faraday, isso produz uma f.e.m E2 na bobina
2, dada por

E2 = �N2
d�2

dt

Além disso, podemos representar a proporcionalidade entre o fluxo total N2�2 através
da bobina 2 e a corrente I1 da bobina 1 na forma

N2�2 = M12I1

onde M12 é chamada indutância mútua das duas bobinas. Portanto,

N2
d�2

dt

= M12
dI1

dt

e podemos escrever

E2 = �M12
dI1

dt

, (8.3)

ou seja, a variação da corrente I1 na bobina 1 induz uma f.e.m E2 na bobina 2.

Podemos repetir o raciocínio anterior para o caso oposto, no qual uma corrente variável
I2 na bobina 2 produza um fluxo magnético variável �1 e induza uma f.e.m E1 na bobina 1.
E com isso, verificamos que M12 é sempre igual a M21, de modo que podemos representar
a indutância mútua simplesmente pela letra M. Logo, podemos escrever para as f.e.m’s
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induzidas

E2 = �MdI1

dt

e E1 = �MdI2

dt

(8.4)

e que a indutância mútua é

M =

N2�2

I1
=

N1�1

I2
(8.5)

A primeira equação afirma que a variação da corrente na bobina 1 produz uma variação
do fluxo magnético na bobina 2, induzindo uma fem na bobina 2 que se opõe à variação
desse fluxo, e na segunda equação as bobinas são invertidas.

A unidade no SI de indutância denomina-se henry (H), sendo igual a um weber por
ampère, 1 H = 1 Wb/A.

Exemplo 8.4. Indutância Mútua de Solenóides
Consideremos um solenóide (fonte) de comprimento L com N

I

espiras, carregando uma
corrente I, e tendo área da seção transversal A. À sua volta se encontra outro solenóide
(receptor) com N

E

espiras, conforme figura.
O solenóide interno carrega uma corrente I, de
modo que o campo magnético em seu interior tem
intensidade

B =

µ0NI

I

L

.

Como o fluxo do campo magnético �

B(E) através
do solenóide externo é BA, a indutância mútua é

M =

N

E

�

B(E)

I

=

N

E

BA

I

e usando o valor do campo magnético

M = µ0
N

E

N

I

A

L

Um efeito análogo ocorre até mesmo quando consideramos uma única bobina isolada.
Quando existe uma corrente em um circuito, ela produz um campo magnético que gera
um fluxo através do próprio circuito, e quando a corrente varia, esse fluxo também varia.
Portanto, qualquer circuito percorrido por uma corrente variável possui uma f.e.m induzida
nele mesmo pela variação do seu próprio fluxo magnético, que de acordo com a lei de Lenz,
sempre se opõe à variação da corrente que produz a f.e.m e, portanto, tende a tornar mais
difícil qualquer variação da corrente.

Uma f.e.m auto-induzida pode ocorrer em qualquer circuito, porém o efeito é ampliado



8.5. ENERGIA MAGNÉTICA 101

quando o circuito contém uma bobina de N espiras. Por analogia à indutância mútua,
definimos a auto-indutância L do circuito na forma

L =

N�

B

I

(8.6)

E de acordo com a lei de Faraday para uma bobina com N espiras, a f.e.m auto-induzida
pode ser escrita em termos da auto-indutância como

E = �LdI

dt

(8.7)

E o sinal negativo novamente mostra que a fem auto-induzida em um circuito se opõe a
qualquer variação da corrente que ocorra no circuito.

Exemplo 8.5. Auto-indutância de um Solenóide
Consideremos novamente um solenóide de comprimento L com N espiras cuja área da

seção transversal A. Sabemos que o campo magnético produzido no interior do solenóide
devido a uma corrente I é

B = µ0nI = µ0
N

L

I

onde n = N/L é o número de voltas por unidade de comprimento. O fluxo magnético
através de cada espira é

�

B

= BA = µ0
NA

L

I

Usando a definição da auto-indutância, encontramos que

L =

N�

B

I

=

µ0N
2
A

L

Assim, a auto-indutância de um solenóide só depende da geometria e é
proporcional ao quadrado do número de espiras no solenóide.

8.5 Energia Magnética

Digamos que U seja a energia armazenada num indutor em algum instante de tempo,
então a taxa dU/dt na qual a energia está sendo armazenada é

dU

dt

= EI = LI dI
dt

Para determinar a energia total armazenada no indutor, podemos re-escrever essa ex-
pressão e integrar



102 CAPÍTULO 8. INDUÇÃO ELETROMAGNÉTICA

U =

Z
t

0

dU

dt

dt =

Z
I

0

LI 0 dI 0 = L
Z

I

0

I

0
dI

0

U =

1

2

LI2 (8.8)

E essa expressão representa a energia armazenada no campo magnético do indutor quando
a corrente é I. Note que essa equação é similar aquela da energia armazenada no campo elé-
trico de um capacitor, U =

1
2C(�V )

2. No outro caso, vimos que aquela energia é necessária
para estabelecer o campo elétrico.

Podemos também determinar a densidade de energia de um campo magnético. Por
simplicidade, consideremos um solenóide cuja indutância é dada por

L = µ0n
2
Al

O campo magnético do solenóide é dado por

B = µ0nI

Substituindo a expressão para L e I = B/µ0n, temos

U =

1

2

LI2 = 1

2

µ0n
2
AL

✓
B

µ0n

◆2

=

B

2

2µ0
AL

e como AL é o volume do solenóide, a densidade de energia magnética, ou a energia arma-
zenada no campo magnético por unidade de volume do indutor é

u

B

=

U

AL

=

B

2

2µ0
(8.9)

Embora essa expressão foi derivada para o caso especial de um solenóide, é válida para
qualquer região do espaço em que existe um campo magnético. Note que essa energia é similar
a forma da energia por unidade de volume armazenada num campo elétrico, u

E

=

1
2✏0E

2.
Em ambos os casos, a densidade de energia é proporcional ao quadrado do campo.

8.6 Equações de Maxwell e Além!

Concluímos esse capítulo apresentando as quatro equações que são tratadas como as
bases de todos fenômenos elétricos e magnéticos. Essas equações, desenvolvidas por James
Clerk Maxwell, são tão fundamentais para os fenômenos eletromagnéticos como as leis de
Newton são para os fenômenos mecânicos. De fato, a teoria de Maxwell foi mais longe do
que ele próprio poderia imaginar pois concorda ainda mesmo com a teoria da relatividade
especial, conforme Einstein mostrou em 1905.
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As quatro equações de Maxwell sãoI
@V

~

E · d ~A =

Q

int

✏0
(8.10)

I
@V

~

B · d ~A = 0 (8.11)

I
@S

~

E · d~l = � d

dt

Z
S

~

B · d ~A (8.12)

I
@S

~

B · d~l = µ0I + ✏0µ0
d

dt

Z
S

~

E · d ~A (8.13)

e junto da equação para a força de Lorentz

~

F = q

~

E + q~v ⇥ ~

B (8.14)

contém toda a informação sobre os fenômenos eletromagnéticos!
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