Capitulo 7
Fontes de Campo Magnético

Nesse capitulo, exploraremos a origem do campo magnético - cargas em movimento.
Apresentaremos a Lei de Gauss do Magnetismo, a Lei de Biot-Savart, a Lei de Ampére e a

corrente de deslocamento de Maxwell.

7.1 Lei de Gauss no Magnetismo

O fluxo associado com um campo magnético é definido numa maneira similar aquela

usada para definir o fluxo elétrico.
Se em algum elemento de superficie dA, o campo

magnético é B” o fluxo magnético através desse

- elemento ¢ B - dj, onde dA & um vetor que é
dAf\e perpendicular a superficie e tem intensidade igual
B a area dA. Portanto, o fluxo magnético total ®p

sobre a superficie é

Dy = / B.dA

A unidade de fluxo magnético ¢ T.m?, que é definido como Weber (Wb), de modo que 1
Wb =1 T.m?2

Vimos no capitulo 2 que o fluxo elétrico através de uma superficie fechada em volta
de uma carga é proporcional a essa carga (Lei de Gauss). Em outras palavras, o nimero
de linhas de campo elétrico deixando a superficie depende somente da carga total no seu
interior. Essa propriedade é baseada no fato que as linhas de campo elétrico comecam e
terminam em cargas elétricas.

A situacao é um pouco diferente para campos magnéticos, que sao continuos e formam
curvas fechadas. Em outras palavras, linhas de campo magnético nao comecam e terminam
em qualquer ponto, conforme figura (a) a seguir.

Note que para qualquer superficie fechada, tal como a linha tracejada na figura (a)

acima, o numero de linhas entrando na superficie é igual ao nimero saindo dela, entao, o
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b =0

fluxo magnético total é zero. No contrario, para uma superficie fechada ao redor de uma

carga de um dipolo elétrico, conforme figura (b), o fluxo elétrico total ndo é zero.

Assim, a lei de Gauss no magnetismo estabelece que o fluxo magnético total em

qualquer superficie fechada é sempre zero

B-dA=0 (7.1)
/

o que permite afirmar que nao ha cargas magnéticas, ou seja, monopoélos magnéticos

nao existem.

7.2 Lei de Biot-Savart

Se nao existem cargas magnéticas, quais seriam as fontes do campo magnético?

Pouco depois de Oersted descobrir em 1819 que uma bissola é defletida por um condutor
que carrega uma corrente elétrica, Jean-Baptiste Biot e Félix Savart realizaram experimentos

quantitativos da forca exercida por uma corrente elétrica num magneto proximo.

-

A partir dos seus resultados experimentais para o campo magnético dB num ponto P
associado com um elemento de linha dl de um condutor carregando uma corrente estacionaria
I, conforme figura, Biot e Savart chegaram as seguintes propriedades experimentais para o

campo magnético dB:
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o
e ¢ perpendicular a ambos dl e ao vetor unité-

- dB *P
rio 7 dirigido de dl para P. /
//
e a sua intensidade é inversamente proporcio- ST /
/
nal a distancia até o ponto 72, e é proporcio- ./ /;
r ) e
nal a corrente [ e a magnitude dl. gﬁdf -

e a sua intensidade é proporcional a sen 6, onde //

0 é o angulo entre os vetores dl e 7.

Essas propriedades podem ser resumidas numa expressao matematica conhecida hoje
como lei de Biot-Savart
L o [dlx P
dB = ———— 7.2
A7 r? (7:2)

onde pp é a constante denominada permeabilidade magnética do vacuo e tem valor

igual a

o = 4m x 1077 T.m/A

Note que o campo magnético dado pela Lei de Biot-Savart é o campo criado por uma
corrente em somente um pequeno elemento de linha dl’ do condutor. Para encontrar o campo
magnético total B criado em algum ponto por uma corrente de tamanho finito, devemos
somar as contribuigoes de todos elementos de corrente [ ar que formam a corrente. Isso é,

devemos calcular B a partir da integral

_ I [dlx7
B_'ML >2<'r

(7.3)

T 4r r

Exemplo 7.1. Campo Magnético de um Fio Retilineo

Consideremos um fio retilineo e fino, de comprimento L, carregando uma corrente

elétrica estacionaria I e localizado ao longo do eixo z, conforme figura.
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Pela Lei de Biot-Savart, sabemos que o campo

Y magnético criado pelo fio no ponto P que situa-
7)/» se a uma distancia s do fio pode ser calculado
/ por
r// S P a
/ B Lol / dl x #
iy /\( 0 At J5o T2
= — . . . .
Lif . Primeiramente vamos identificar o elemento de
e I corrente do fio, que pode ser facilmente descrito

por Al = dad.
Em seguida iremos efetuar o produto vetorial entre dl'e 7, que nesse caso tem a direcao
z positivo, usando a regra da mao direita, de modo que
Al x 7 = |dl x 7|2 = (dzsen )2

A distancia do ponto P ao elemento de corrente é obtida geometricamente como r? =

r? 4 s, além do fato que sen = s/r, e com isso temos a integral de Biot-Savart

L/2
_ wol . s dz
B(p) = H% A
(P) g Z/_L/2 (22 + s2)3/2

e como [ sdxz/(z%+ s?)%% = x/sv/2? + s2 (*Mostre!), podemos escrever

E . /,L()[ L/S P
am \/(L/2)? + 2

No limite que o fio é muito longo, ou seja, L > s, é facil mostrar que

E facil notar que o campo magnético produzido por um fio muito longo s6 depende
da distancia perpendicular a ele do ponto. Isto é, a intensidade do campo B & constante
em qualquer circulo de raio s, enquanto sua direcao é dado pela regra da mao-direita
de tal forma que o campo circule ao redor do fio. Assim, as linhas de campo magnético
produzidas por um fio retilineo e muito longo que carreqga uma corrente estaciondria sao

circulos concéntricos ao fio e pertencem a planos perpendiculares a ele.

Exemplo 7.2. Campo Magnético no eixo de uma Espira

Consideremos uma espira circular de raio R localizada no plano xy e carregando uma
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corrente estacionaria I, conforme figura.
Pela Lei de Biot-Savart, sabemos que o
campo magnético criado pela espira em
qualquer ponto P que situa-se a uma dis-
tancia z do centro O dela, pode ser cal-

culado por

§ _ ,LL()] / de 7
4mr espira T2

Nessa situagao, todos os elementos de

corrente dl da espira sao perpendicula-

B res ao vetor 7 do proprio elemento, uma
vez que o primeiro se encontra no plano

xy e o segundo no plano xz, como na si-

tuagao apresentada ao lado. Entao, para

qualquer elemento

| Al x 7| = (d)(1) sen90° = di
e sua distancia até o ponto P é a mesma
r? =22 + R%

A direcao de dB produzido por esse elemento é perpendicular ao plano formado pordf e
7, conforme figura. Decompondo esse vetor numa componente dB, e outra dB,, notamos
que quando as componentes dB, forem somadas sobre todos os elementos da espira, a
componente resultante B, sera nula. Mesmo argumento vale para a componente B,, de

_,
modo que a Unica componente restante serda a componente B, dada por B = B,Z onde

BZ:/ dBCOSQZM_of/ _dscosf
espira 4 espira (22 + RQ)

sendo a integral feita sobre toda a espira. Como cos = R/(z? + R?)'/2, obtemos que

pol R
B, = d
i (22 + R2)32 / °

ecomo [ .. ds = 27 R é o comprimento da espira, chegamos ao resultado
Bp) = LI,
T 9(2 1 R

Podemos re-escrever esse resultado usando a defini¢ao de momento de dipolo magnético

da espira, apresentada no capitulo anterior, que nesse caso é
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= o D23 _ Ho i
g =imR°2 = B(P) = or (2 RO

ou seja, o campo magnético no eixo da espira tem a direcao do momento de dipolo
magnético dela propria.
Se o ponto P estiver muito distante da espira, ou a espira fosse muito pequena, esta-
rfamos no limite z > R, da tal forma que
= to B
lim B(P) = ——
Z>R (P) 2m 23

que ¢é o limite conhecido como o campo magnético de um dipolo magnético fisico.

O padrao das linhas de campo magnético para
uma espira circular de corrente é apresentado na
figura a seguir. Por clareza, as linhas sao dese-

nhadas somente em um plano que contém o eixo

da espira.

Assim, as linhas de campo magnético produzidas por uma espira circular sao axialmente
simétricas e parecem aquelas linhas produzidas por um ima, de modo que podemos associar
a espira um poélo norte e um poélo sul, essencialmente caracterizado pelo seu momento de

dipolo magnético fi.

7.3 Lei de Ampére

Em 1819, a descoberta de Oersted sobre uma bussola defletida demonstra que um con-
dutor carregando uma corrente elétrica produz campo magnético. A figura a seguir mostra
como esse efeito pode ser demonstrado usando algumas biuissolas colocadas num plano hori-
zontal proximo a um fio longo vertical.

Quando nenhuma corrente passa pelo fio, todas bissolas apontam na mesma direcao
(aquela do campo magnético da Terra), como esperado na Fig.(a). Quando o fio carrega
uma corrente estacionaria forte, todas as biussolas sao defletidas numa dire¢ao tangente a
um circulo, como na Fig.(b).

Como as bussolas apontam na direcao de E, concluimos que as linhas de B formam
circulos ao redor do fio, como discutido na secao anterior. Por simetria, a intensidade de
B ¢ a mesma em todo lugar no caminho circular centrado no fio e pertencente ao plano
perpendicular ao fio, de modo que B = B(S)QZ), sendo ¢ a coordenada angular cilindrica.

Variando a corrente elétrica I e a distancia s ao fio, encontramos que B(s) é proporcional a
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corrente e inversamente proporcional ao fio, de modo que B(s) = pol/27s.

Vamos calcular o produto B-dl para um pequeno elemento de linha dl’ num caminho
circular definido pela bussola, e somar esse produto sobre todos elementos de linha sobre o
caminho circular. Ao longo desse caminho, os vetores dl'e B sio paralelos em cada ponto
(vide Fig.(b)), tal que B - dl = Bdl. Além disso, a intensidade de B é constante nesse
circulo conforme vimos. Portanto, a soma dos produtos b dl sobre o caminho fechado, que é

equivalente a integral de linha B. dl_: é

fﬁ-dlﬁ:B%dl:gﬁ(%rs):uoi

e

onde f dl = 27s é circunferéncia do caminho circular. Embora esse resultado fora calcu-
lado para o caso especial de um caminho circular ao redor do fio, isso vale para uma curva
fechada de qualquer forma, uma amperiana circundante & corrente.

O caso geral, conhecido como Lei de Ampére, pode ser descrito como a integral de linha
de B - dl_: ou seja, a circulagao de B ao redor de qualquer curva fechada é igual a pl, onde

I é a corrente total que passa através de qualquer superficie limitada pela curva fechada.

]4 B - dl = gl (7.4)

Exemplo 7.3. Circulagao do Campo Magnético

Consideremos 4 curvas fechadas nomeadas a, b, ¢ e d orientadas no sentido anti-horario
e pertencentes a um plano perpendicular ao eixo de trés fios que carregam correntes I,

conforme figura.
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Pela Lei de Ampeére, sabemos que a circulagao do
campo magnético criado pelos trés fios em qual-

quer uma das curvas pode ser calculado por

e - N
//,—-._ —————— 4/:—-— \\‘ \\\
7 TS ~~ — -
I'I :///I® \‘\ d: @ I :k\\ |I Cl = fB -dl = NOIenc
\ ‘\'\ S f 1 i
VNS ] *\____J‘/ 1 R -
RN N ! Na curva a vemos que as trés correntes estao cer-
\\\ S 1 \\\: 1
N LT N ! cadas pela curva, de modo que
N b\\ ] @ l\\ |
IN \\ \ I I
a ~ So / II !
\\\ SO~ / ,I — —
SRy Co= 9B -dl=puo(I+1—-1)=pol
S 4 a
~ 7

pois duas correntes estao no sentido positivo e so-
mente uma das correntes esta orientada no sen-

tido contrario.

Na curva b vemos que somente duas correntes estao cercadas pela curva, de modo que

ch]{B’-dfzm(l—J)zo
b

pois uma corrente esta no sentido positivo e a outra esté orientada no sentido contrario.
Na curva ¢ vemos que duas correntes estao cercadas pela curva e ambas no mesmo

sentido, assim

Cczfg-df:uo(l+l):2u0]

Na curva d vemos que duas correntes estao cercadas pela curva e em sentidos opostos,

assim

Cdzfé-dfzﬂo(l—l):O
d

Assim, usando a lei de Ampére fica fdcil determinar a circula¢cdo do campo magné-
tico ao longo de qualquer curva, basta saber a corrente total que atravessa a superficie

delimitada pela curva dada.

A lei de Ampeére descreve a criacao de campos magnéticos por todas configuracoes con-
tinuas de correntes, mas nesse nivel matemaéatico é somente util para calculo de campos
magnéticos de configuracoes de correntes tendo alto grau de simetria. Seu uso é similar
aquele da lei de Gauss no calculo do campo elétrico para distribuicoes de cargas altamente

simétricas.
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Exemplo 7.4. Campo Magnético criado por um Cilindro muito Longo

Consideremos um fio retilineo e muito longo de raio R que carrega uma corrente

estacionaria I que é uniformemente distribuida através da secao reta do fio.

Pela alta simetria do fio, podemos determinar o
campo magnético pela lei de Ampére. De fato,
pela simetria axial, as linhas de forca de E,
dentro e fora do fio, sdo circulos concéntricos,
orientados como na figura (curvas 1 e 2), e a

intensidade de B nao varia ao longo de cada um

desses circulos.

Usando coordenadas cilindricas com eixo z paralelo & corrente, temos

B = B(s)¢
e 0 elemento de linha de um circulo pode ser escrito como dl = dlp.
Para o caso s > R, devemos chegar no mesmo resultado que aquele obtido pela lei de
Biot-Savart. Para analisar esse caso, escolhemos como caminho de integracao o circulo 1,

conforme figura, e com isso temos

j{ﬁ -dl'= 21sB(s) = pol
1
e como a corrente total I atravessa a area definida pela curva 1, concluimos que

ol

Para o caso s < R, escolhemos como caminho de integracao o circulo 2, conforme

figura, e com isso temos

743? -dl'= 27wsB(s) = pol’
2

e como a corrente I’ que atravessa a area definida pela curva 2 é proporcional a area da

mesma, sabemos que I’ = (I/mR?)ws?, e com isso

pol

B(S<R>IF}22$
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. . . B
A intensidade do campo magnético B como fun-
¢ao da distancia ao eixo do fio s é representada
no grafico ao lado. Notemos que nos dois casos, ~s ~1/s

o campo magnético em s = R é o mesmo, de-

monstrando que o campo magnético é continuo

na superficie do fio.

Exemplo 7.5. Campo Magnético criado por um Solenéide muito Longo

Consideremos um solendide, um fio muito longo enrolado na forma de uma hélice, reti-
lineo e muito longo de raio R que carrega uma corrente estacionaria I e tem n espiras por
unidade de comprimento. De fato, consideraremos um solendide ideal, onde a separacao
entre as espiras é desprezivel e o comprimento do solenéide é muito maior que o seu raio

interno.

. Pela alta simetria do solendide, podemos deter-

B minar o campo magnético pela lei de Ampeére.
De fato, pela simetria cilindrica, as linhas de
forca de B , dentro e fora do solenéide, sao axiais,
isto é, sao linhas paralelas ao eixo do solendide,
orientados como na figura (corte longitudinal do
solendide), e a intensidade de B deve depender

da distancia ao eixo do solenéide.

Usando coordenadas cilindricas com eixo z para-

lelo & corrente, temos

B = B(s)2

Para determinar o campo no interior do solendide, ou seja no caso s < R, escolhemos
como amperiana o retangulo C = C; UC,UC3UCy, conforme figura. Para facilitar o calculo,
a curva Cs é levada ao infinito, de tal forma que o campo magnético sobre essa curva seja

nulo, de modo que
%E dl'= | B-dl'=1B(s) = piolenc
C C1

onde a integrais sobre Cy e C3 devem ser nulas pois B 1 dl ao longo dessas curvas, e a
integral sobre C, é nula pois B =0 quando w — 0. Além disso, a corrente total que

passa pela amperiana é I, = NI, de modo que
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N
B(s < R) = /JJOTI = ponl

onde N/I é exatamente n, o numero de espiras por unidade de comprimento do sole-

noide.

Para determinar o campo no exterior do solendide, ou seja no caso s > R, escolhemos
como amperiana o mesmo retangulo C, porém, levando a curva C; para fora do solenéide,

e com 1isso

]{Bdl": B-dl'=1B(s) = piolene = 0
C C1
onde usamos os mesmos argumentos anteriores, e utilizamos o fato que a corrente

nessa nova amperiana é zero, de modo que

B(s>R)=0

Assim, num solendide ideal, o campo magnético € uniforme em seu interior e nulo na

regiao externa.

7.4 Corrente de Deslocamento e a Lei de Ampére-Maxwell

Vimos que quando um condutor carregada uma corrente elétrica e tem alta simetria,
podemos usar a lei de Ampére para calcular o campo magnético criado. Na lei de Ampére,
$ B.dl= 1ol , a integral de linha é sobre qualquer curva fechada através da qual atravessa
a corrente de condugao, onde a corrente de condugao é definida pela expressao I = dq/dt.
Porém, nesta forma, a lei de Ampére é valida somente se os campos elétricos presentes sao
constantes no tempo, ou seja, estacionarios.

Consideremos um capacitor que esté carregando.

Quando uma corrente de conducao esta presente,

y a carga na placa positiva muda mas nenhuma

Curva C —q corrente existe entre as placas. A lei de Ampére

g estabelece que § B - dl ao longo do caminho
deve ser igual a pol, onde I é a corrente total
que atravessa qualquer superficie delimitada pela

curva C.

Agora, consideremos duas superficies A; e A,, con-

forme figura, delimitadas pela mesma curva C.

Quando o caminho C é considerada como a borda de A;, ¢ B dl'= ol pois a corrente
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de conducao passa através de A;. Quando o caminho é considerado como a borda de As,
contudo, ¢ B-dl'=0 pois nenhuma corrente de conducao passa através de A,. Entao, temos
uma situagao contraditoria que aparece devido a discontinuidade da corrente!

Maxwell resolveu esse problema postulando um termo adicional do lado direito da lei de

Ampére, que inclui um fator chamado corrente de deslocamento [, definida como

do
Id = € th

(7.5)

onde €y é a permissividade elétrica do vacuo e &y = f E - dA é o fluxo elétrico.

Como o capacitor esté sendo carregado (ou descarregado), a variagao do campo elétrico
entre as placas deve ser considerada equivalente a corrente. Quando a expressao para a
corrente de deslocamento é adicionada a corrente de conducao no lado direito da lei de
Ampére, o problema apresentado fica resolvido. N&ao importa que superficie delimitada
por C seja escolhida, ora uma corrente de condugao ora uma corrente de deslocamento ira
atravessé-la.

Com esse novo termo I;, podemos expressar a forma geral da lei de Ampére, denominada

lei de Ampére-Maxwell como

dop
dt

Desta forma, concluimos que campos magnéticos sao produzidos ora por correntes elétri-

fﬁ Al = po(1 + 1) = pol + poeo (7.6)

cas ora por campos elétricos que variam no tempo.

Exemplo 7.6. Corrente de Deslocamento num Capacitor Carregando

Consideremos um capacitor com placas de area A carregando devido a uma corrente
I, conforme figura.

O fluxo elétrico que atravessa a superficie A, €

B [ C\E /l/ ‘;\\\ \ . .
= 1| o= by= [ B-dd=pa
I \ \\< / @ /I 4 47 Az
) = \ onde F é a intensidade do campo elétrico uni-
As A forme entre as placas.

Se ¢ é carga numa das placas em qualquer instante ¢, entdo E = ¢/(egA), e o fluxo

elétrico através Ay é simplesmente

Entao, a corrente de deslocamento através de A, é
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= Ch—e— = —=
A T dt
Isto é, a corrente de deslocamento 1 através de Ay € precisamente igual a corrente de

conducao I através de A;!
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