
Capítulo 7

Fontes de Campo Magnético

Nesse capítulo, exploraremos a origem do campo magnético - cargas em movimento.
Apresentaremos a Lei de Gauss do Magnetismo, a Lei de Biot-Savart, a Lei de Ampère e a
corrente de deslocamento de Maxwell.

7.1 Lei de Gauss no Magnetismo

O fluxo associado com um campo magnético é definido numa maneira similar aquela
usada para definir o fluxo elétrico.

Se em algum elemento de superfície dA, o campo
magnético é ~

B, o fluxo magnético através desse
elemento é ~

B · d ~

A, onde d

~

A é um vetor que é
perpendicular a superfície e tem intensidade igual
a área dA. Portanto, o fluxo magnético total �

B

sobre a superfície é

�

B

=

Z
~

B · d ~A
A unidade de fluxo magnético é T.m2, que é definido como Weber (Wb), de modo que 1

Wb = 1 T.m2.
Vimos no capítulo 2 que o fluxo elétrico através de uma superfície fechada em volta

de uma carga é proporcional a essa carga (Lei de Gauss). Em outras palavras, o número
de linhas de campo elétrico deixando a superfície depende somente da carga total no seu
interior. Essa propriedade é baseada no fato que as linhas de campo elétrico começam e
terminam em cargas elétricas.

A situação é um pouco diferente para campos magnéticos, que são contínuos e formam
curvas fechadas. Em outras palavras, linhas de campo magnético não começam e terminam
em qualquer ponto, conforme figura (a) a seguir.

Note que para qualquer superfície fechada, tal como a linha tracejada na figura (a)
acima, o número de linhas entrando na superfície é igual ao número saindo dela, então, o
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–

+

fluxo magnético total é zero. No contrário, para uma superfície fechada ao redor de uma
carga de um dipolo elétrico, conforme figura (b), o fluxo elétrico total não é zero.

Assim, a lei de Gauss no magnetismo estabelece que o fluxo magnético total em
qualquer superfície fechada é sempre zero

I
~

B · d ~

A = 0 (7.1)

o que permite afirmar que não há cargas magnéticas, ou seja, monopólos magnéticos
não existem.

7.2 Lei de Biot-Savart

Se não existem cargas magnéticas, quais seriam as fontes do campo magnético?

Pouco depois de Oersted descobrir em 1819 que uma bússola é defletida por um condutor
que carrega uma corrente elétrica, Jean-Baptiste Biot e Félix Savart realizaram experimentos
quantitativos da força exercida por uma corrente elétrica num magneto próximo.

A partir dos seus resultados experimentais para o campo magnético d

~

B num ponto P
associado com um elemento de linha d

~

l de um condutor carregando uma corrente estacionária
I, conforme figura, Biot e Savart chegaram as seguintes propriedades experimentais para o
campo magnético d

~

B:
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• é perpendicular a ambos d~l e ao vetor unitá-
rio r̂ dirigido de d

~

l para P .

• a sua intensidade é inversamente proporcio-
nal a distância até o ponto r

2, e é proporcio-
nal a corrente I e a magnitude dl.

• a sua intensidade é proporcional a sen ✓, onde
✓ é o ângulo entre os vetores d

~

l e r̂.

Essas propriedades podem ser resumidas numa expressão matemática conhecida hoje
como lei de Biot-Savart

d

~

B =

µ0

4⇡

I d

~

l⇥ r̂

r

2
(7.2)

onde µ0 é a constante denominada permeabilidade magnética do vácuo e tem valor
igual a

µ0 = 4⇡ ⇥ 10

�7 T.m/A

Note que o campo magnético dado pela Lei de Biot-Savart é o campo criado por uma
corrente em somente um pequeno elemento de linha d

~

l do condutor. Para encontrar o campo
magnético total

~

B criado em algum ponto por uma corrente de tamanho finito, devemos
somar as contribuições de todos elementos de corrente I d

~

l que formam a corrente. Isso é,
devemos calcular ~

B a partir da integral

~

B =

µ0I

4⇡

Z
d

~

l⇥ r̂

r

2
(7.3)

Exemplo 7.1. Campo Magnético de um Fio Retilíneo

Consideremos um fio retilíneo e fino, de comprimento L, carregando uma corrente
elétrica estacionária I e localizado ao longo do eixo x, conforme figura.
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Pela Lei de Biot-Savart, sabemos que o campo
magnético criado pelo fio no ponto P que situa-
se a uma distância s do fio pode ser calculado
por

~

B =

µ0I

4⇡

Z
fio

d

~

l⇥ r̂

r

2

Primeiramente vamos identificar o elemento de
corrente do fio, que pode ser facilmente descrito
por d

~

l = dxx̂.

Em seguida iremos efetuar o produto vetorial entre d~l e r̂, que nesse caso tem a direção
z positivo, usando a regra da mão direita, de modo que

d

~

l⇥ r̂ = | d~l⇥ r̂|ẑ = (dx sen ✓)ẑ

A distância do ponto P ao elemento de corrente é obtida geometricamente como r

2
=

x

2
+ s

2, além do fato que sen ✓ = s/r, e com isso temos a integral de Biot-Savart

~

B(P) =

µ0I

4⇡

ẑ

Z
L/2

�L/2

s dx

(x

2
+ s

2
)

3/2

e como
R
s dx/(x

2
+ s

2
)

3/2
= x/s

p
x

2
+ s

2 (*Mostre!), podemos escrever

~

B(P) =

µ0I

4⇡

L/sp
(L/2)

2
+ s

2
ẑ

No limite que o fio é muito longo, ou seja, L � s, é fácil mostrar que

lim

L�y

~

B(P) =

µ0I

2⇡s

ẑ

É fácil notar que o campo magnético produzido por um fio muito longo só depende
da distância perpendicular a ele do ponto. Isto é, a intensidade do campo ~

B é constante
em qualquer círculo de raio s, enquanto sua direção é dado pela regra da mão-direita
de tal forma que o campo circule ao redor do fio. Assim, as linhas de campo magnético

produzidas por um fio retilíneo e muito longo que carrega uma corrente estacionária são

círculos concêntricos ao fio e pertencem a planos perpendiculares a ele.

Exemplo 7.2. Campo Magnético no eixo de uma Espira

Consideremos uma espira circular de raio R localizada no plano xy e carregando uma
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corrente estacionária I, conforme figura.
Pela Lei de Biot-Savart, sabemos que o
campo magnético criado pela espira em
qualquer ponto P que situa-se a uma dis-
tância z do centro O dela, pode ser cal-
culado por

~

B =

µ0I

4⇡

Z
espira

d

~

l⇥ r̂

r

2

Nessa situação, todos os elementos de
corrente d

~

l da espira são perpendicula-
res ao vetor r̂ do próprio elemento, uma
vez que o primeiro se encontra no plano
xy e o segundo no plano xz, como na si-
tuação apresentada ao lado. Então, para
qualquer elemento

| d~l⇥ r̂| = (dl)(1) sen 90

o

= dl

e sua distância até o ponto P é a mesma
r

2
= z

2
+R

2.

A direção de d ~B produzido por esse elemento é perpendicular ao plano formado pord~l e
r̂, conforme figura. Decompondo esse vetor numa componente dB

x

e outra dB

z

, notamos
que quando as componentes dB

x

forem somadas sobre todos os elementos da espira, a
componente resultante B

x

será nula. Mesmo argumento vale para a componente B

y

, de
modo que a única componente restante será a componente B

z

dada por ~

B = B

z

ẑ onde

B

z

=

Z
espira

dB cos ✓ =

µ0I

4⇡

Z
espira

ds cos ✓

(z

2
+R

2
)

sendo a integral feita sobre toda a espira. Como cos ✓ = R/(z

2
+R

2
)

1/2, obtemos que

B

z

=

µ0IR

4⇡(z

2
+R

2
)

3/2

Z
espira

ds

e como
R

espira

ds = 2⇡R é o comprimento da espira, chegamos ao resultado

~

B(P) =

µ0IR
2

2(z

2
+R

2
)

3/2
ẑ

Podemos re-escrever esse resultado usando a definição de momento de dipolo magnético
da espira, apresentada no capítulo anterior, que nesse caso é
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~µ = i⇡R

2
ẑ ) ~

B(P) =

µ0

2⇡

~µ

(z

2
+R

2
)

3/2

ou seja, o campo magnético no eixo da espira tem a direção do momento de dipolo
magnético dela própria.

Se o ponto P estiver muito distante da espira, ou a espira fosse muito pequena, esta-
ríamos no limite z � R, da tal forma que

lim

z�R

~

B(P) =

µ0

2⇡

~µ

z

3

que é o limite conhecido como o campo magnético de um dipolo magnético físico.

O padrão das linhas de campo magnético para
uma espira circular de corrente é apresentado na
figura a seguir. Por clareza, as linhas são dese-
nhadas somente em um plano que contém o eixo
da espira.

Assim, as linhas de campo magnético produzidas por uma espira circular são axialmente

simétricas e parecem aquelas linhas produzidas por um imã, de modo que podemos associar
a espira um pólo norte e um pólo sul, essencialmente caracterizado pelo seu momento de
dipolo magnético ~µ.

7.3 Lei de Ampère

Em 1819, a descoberta de Oersted sobre uma bússola defletida demonstra que um con-
dutor carregando uma corrente elétrica produz campo magnético. A figura a seguir mostra
como esse efeito pode ser demonstrado usando algumas bússolas colocadas num plano hori-
zontal próximo a um fio longo vertical.

Quando nenhuma corrente passa pelo fio, todas bússolas apontam na mesma direção
(aquela do campo magnético da Terra), como esperado na Fig.(a). Quando o fio carrega
uma corrente estacionária forte, todas as bússolas são defletidas numa direção tangente a
um círculo, como na Fig.(b).

Como as bússolas apontam na direção de ~

B, concluímos que as linhas de ~

B formam
círculos ao redor do fio, como discutido na seção anterior. Por simetria, a intensidade de
~

B é a mesma em todo lugar no caminho circular centrado no fio e pertencente ao plano
perpendicular ao fio, de modo que ~

B = B(s)�̂, sendo � a coordenada angular cilíndrica.
Variando a corrente elétrica I e a distância s ao fio, encontramos que B(s) é proporcional a
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corrente e inversamente proporcional ao fio, de modo que B(s) = µ0I/2⇡s.
Vamos calcular o produto ~

B · d~l para um pequeno elemento de linha d

~

l num caminho
circular definido pela bússola, e somar esse produto sobre todos elementos de linha sobre o
caminho circular. Ao longo desse caminho, os vetores d

~

l e ~

B são paralelos em cada ponto
(vide Fig.(b)), tal que ~

B · d~l = B dl. Além disso, a intensidade de ~

B é constante nesse
círculo conforme vimos. Portanto, a soma dos produtos b dl sobre o caminho fechado, que é
equivalente a integral de linha ~

B · d~l, éI
~

B · d~l = B

I
dl =

µ0I

2⇡s

(2⇡s) = µ0i

onde
H
dl = 2⇡s é circunferência do caminho circular. Embora esse resultado fora calcu-

lado para o caso especial de um caminho circular ao redor do fio, isso vale para uma curva
fechada de qualquer forma, uma amperiana circundante à corrente.

O caso geral, conhecido como Lei de Ampère, pode ser descrito como a integral de linha
de ~

B · d~l, ou seja, a circulação de ~

B ao redor de qualquer curva fechada é igual a µ0I, onde
I é a corrente total que passa através de qualquer superfície limitada pela curva fechada.I

~

B · d~l = µ0Ienc

(7.4)

Exemplo 7.3. Circulação do Campo Magnético

Consideremos 4 curvas fechadas nomeadas a, b, c e d orientadas no sentido anti-horário
e pertencentes a um plano perpendicular ao eixo de três fios que carregam correntes I,
conforme figura.
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◊

Pela Lei de Ampère, sabemos que a circulação do
campo magnético criado pelos três fios em qual-
quer uma das curvas pode ser calculado por

C
i

⌘
I
i

~

B · d~l = µ0Ienc

Na curva a vemos que as três correntes estão cer-
cadas pela curva, de modo que

C
a

⌘
I
a

~

B · d~l = µ0(I + I � I) = µ0I

pois duas correntes estão no sentido positivo e so-
mente uma das correntes está orientada no sen-
tido contrário.

Na curva b vemos que somente duas correntes estão cercadas pela curva, de modo que

C
b

⌘
I
b

~

B · d~l = µ0(I � I) = 0

pois uma corrente está no sentido positivo e a outra está orientada no sentido contrário.
Na curva c vemos que duas correntes estão cercadas pela curva e ambas no mesmo

sentido, assim

C
c

⌘
I
c

~

B · d~l = µ0(I + I) = 2µ0I

Na curva d vemos que duas correntes estão cercadas pela curva e em sentidos opostos,
assim

C
d

⌘
I
d

~

B · d~l = µ0(I � I) = 0

Assim, usando a lei de Ampère fica fácil determinar a circulação do campo magné-

tico ao longo de qualquer curva, basta saber a corrente total que atravessa a superfície

delimitada pela curva dada.

A lei de Ampère descreve a criação de campos magnéticos por todas configurações con-
tínuas de correntes, mas nesse nível matemático é somente útil para cálculo de campos
magnéticos de configurações de correntes tendo alto grau de simetria. Seu uso é similar
aquele da lei de Gauss no cálculo do campo elétrico para distribuições de cargas altamente
simétricas.
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Exemplo 7.4. Campo Magnético criado por um Cilindro muito Longo

Consideremos um fio retilíneo e muito longo de raio R que carrega uma corrente
estacionária I que é uniformemente distribuída através da seção reta do fio.

Pela alta simetria do fio, podemos determinar o
campo magnético pela lei de Ampère. De fato,
pela simetria axial, as linhas de força de ~

B,
dentro e fora do fio, são círculos concêntricos,
orientados como na figura (curvas 1 e 2), e a
intensidade de B não varia ao longo de cada um
desses círculos.

Usando coordenadas cilíndricas com eixo z paralelo à corrente, temos

~

B = B(s)'̂

e o elemento de linha de um círculo pode ser escrito como d

~

l = dl'̂.
Para o caso s > R, devemos chegar no mesmo resultado que aquele obtido pela lei de

Biot-Savart. Para analisar esse caso, escolhemos como caminho de integração o círculo 1,
conforme figura, e com isso temosI

1

~

B · d~l = 2⇡sB(s) = µ0I

e como a corrente total I atravessa a área definida pela curva 1, concluímos que

B(s > R) =

µ0I

2⇡s

Para o caso s < R, escolhemos como caminho de integração o círculo 2, conforme
figura, e com isso temos I

2

~

B · d~l = 2⇡sB(s) = µ0I
0

e como a corrente I

0 que atravessa a área definida pela curva 2 é proporcional à área da
mesma, sabemos que I

0
= (I/⇡R

2
)⇡s

2, e com isso

B(s < R) =

µ0I

2⇡R

2
s
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A intensidade do campo magnético B como fun-
ção da distância ao eixo do fio s é representada
no gráfico ao lado. Notemos que nos dois casos,
o campo magnético em s = R é o mesmo, de-
monstrando que o campo magnético é contínuo
na superfície do fio.

Exemplo 7.5. Campo Magnético criado por um Solenóide muito Longo

Consideremos um solenóide, um fio muito longo enrolado na forma de uma hélice, reti-
líneo e muito longo de raio R que carrega uma corrente estacionária I e tem n espiras por
unidade de comprimento. De fato, consideraremos um solenóide ideal, onde a separação
entre as espiras é desprezível e o comprimento do solenóide é muito maior que o seu raio
interno.

◊
◊
◊
◊
◊
◊
◊
◊

◊
◊
◊

Pela alta simetria do solenóide, podemos deter-
minar o campo magnético pela lei de Ampère.
De fato, pela simetria cilíndrica, as linhas de
força de ~

B, dentro e fora do solenóide, são axiais,
isto é, são linhas paralelas ao eixo do solenóide,
orientados como na figura (corte longitudinal do
solenóide), e a intensidade de B deve depender
da distância ao eixo do solenóide.

Usando coordenadas cilíndricas com eixo z para-
lelo à corrente, temos

~

B = B(s)ẑ

Para determinar o campo no interior do solenóide, ou seja no caso s < R, escolhemos
como amperiana o retângulo C = C1[C2[C3[C4, conforme figura. Para facilitar o cálculo,
a curva C3 é levada ao infinito, de tal forma que o campo magnético sobre essa curva seja
nulo, de modo que I

C
~

B · d~l =
Z
C1

~

B · d~l = lB(s) = µ0Ienc

onde a integrais sobre C2 e C3 devem ser nulas pois ~

B ? d

~

l ao longo dessas curvas, e a
integral sobre C4 é nula pois ~

B ! 0 quando w ! 0. Além disso, a corrente total que
passa pela amperiana é I

enc

= NI, de modo que
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B(s < R) = µ0
N

l

I = µ0nI

onde N/l é exatamente n, o número de espiras por unidade de comprimento do sole-
nóide.

Para determinar o campo no exterior do solenóide, ou seja no caso s > R, escolhemos
como amperiana o mesmo retângulo C, porém, levando a curva C1 para fora do solenóide,
e com isso I

C
~

B · d~l =
Z
C1

~

B · d~l = lB(s) = µ0Ienc

= 0

onde usamos os mesmos argumentos anteriores, e utilizamos o fato que a corrente
nessa nova amperiana é zero, de modo que

B(s > R) = 0

Assim, num solenóide ideal, o campo magnético é uniforme em seu interior e nulo na

região externa.

7.4 Corrente de Deslocamento e a Lei de Ampère-Maxwell

Vimos que quando um condutor carregada uma corrente elétrica e tem alta simetria,
podemos usar a lei de Ampère para calcular o campo magnético criado. Na lei de Ampère,H

~

B · d~l = µ0I, a integral de linha é sobre qualquer curva fechada através da qual atravessa
a corrente de condução, onde a corrente de condução é definida pela expressão I = dq/dt.
Porém, nesta forma, a lei de Ampère é válida somente se os campos elétricos presentes são
constantes no tempo, ou seja, estacionários.

Consideremos um capacitor que está carregando.
Quando uma corrente de condução está presente,
a carga na placa positiva muda mas nenhuma

corrente existe entre as placas. A lei de Ampère
estabelece que

H
~

B · d~l ao longo do caminho
deve ser igual a µ0I, onde I é a corrente total
que atravessa qualquer superfície delimitada pela
curva C.

Agora, consideremos duas superfícies A1 e A2, con-
forme figura, delimitadas pela mesma curva C.

Quando o caminho C é considerada como a borda de A1,
H

~

B · d~l = µ0I pois a corrente
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de condução passa através de A1. Quando o caminho é considerado como a borda de A2,
contudo,

H
~

B ·d~l = 0 pois nenhuma corrente de condução passa através de A2. Então, temos
uma situação contraditória que aparece devido a discontinuidade da corrente!

Maxwell resolveu esse problema postulando um termo adicional do lado direito da lei de
Ampère, que inclui um fator chamado corrente de deslocamento I

d

, definida como

I

d

⌘ ✏0
d�

E

dt

(7.5)

onde ✏0 é a permissividade elétrica do vácuo e �

E

=

R
~

E · d ~

A é o fluxo elétrico.
Como o capacitor está sendo carregado (ou descarregado), a variação do campo elétrico

entre as placas deve ser considerada equivalente à corrente. Quando a expressão para a
corrente de deslocamento é adicionada à corrente de condução no lado direito da lei de
Ampère, o problema apresentado fica resolvido. Não importa que superfície delimitada
por C seja escolhida, ora uma corrente de condução ora uma corrente de deslocamento irá
atravessá-la.

Com esse novo termo I

d

, podemos expressar a forma geral da lei de Ampère, denominada
lei de Ampère-Maxwell comoI

~

B · d~l = µ0(I + I

d

) = µ0I + µ0✏0
d�

E

dt

(7.6)

Desta forma, concluímos que campos magnéticos são produzidos ora por correntes elétri-
cas ora por campos elétricos que variam no tempo.

Exemplo 7.6. Corrente de Deslocamento num Capacitor Carregando

Consideremos um capacitor com placas de área A carregando devido a uma corrente
I, conforme figura.

O fluxo elétrico que atravessa a superfície A2 é

�

E

=

Z
A2

~

E · d ~

A = EA

onde E é a intensidade do campo elétrico uni-
forme entre as placas.

Se q é carga numa das placas em qualquer instante t, então E = q/(✏0A), e o fluxo
elétrico através A2 é simplesmente

�

E

= EA =

q

✏0

Então, a corrente de deslocamento através de A2 é
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I

d

= ✏0
d�

E

dt

=

dq

dt

Isto é, a corrente de deslocamento I

d

através de A2 é precisamente igual a corrente de

condução I através de A1!
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