
Capítulo 6

Campo Magnético e Força Magnética

Nesse capítulo, estudaremos as forças que agem em cargas elétricas em movimento e em
fios que carregam correntes elétricas na presença de um campo magnético.

6.1 Fatos Experimentais

Na Grécia antiga se conheciam as propriedades de um minério de ferro encontrado na re-
gião da Magnésia, a magnetita (Fe3O4): um pedaço de magnetita é um imã permanente,
que atrai pequenos fragmentos de ferro.

Em 1100 a.C., os chineses já haviam descoberto que uma agulha de magnetita capaz de
se orientar livremente num plano horizontal alinha-se aproximadamente na direção norte-sul,
e usavam este aparelho, a bússola, na navegação.

Em 1600, William Gilbert publicou um importante tratado sobre o magnetismo, onde
observa, pela primeira vez, que a própria Terra atua como um grande imã.

Um imã permanente tem um pólo norte (N) e um pólo sul (S), e é fácil verificar, com
dois imãs, que seus pólos de mesmo nome (N-N e S-S) se repelem, e que seus pólos de nomes
contrários (N-S) se atraem.

Entretanto, a experiência mostra que não é possível separar um pólo do outro num imã.
Se o partirmos em dois, cada um deles continuará tendo dois pólos N e S.

Em anos recentes, fez-se um grande esforço experimental para verificar se existem partí-
culas com “carga magnética”, que seriam pólos N ou S isolados (monopólos magnéticos).
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Nenhum jamais foi detectado. É portanto um fato experimental básico no estudo do mag-
netismo que não existem cargas magnéticas (pólos magnéticos isolados).

Quando salpicamos limalha de ferro sobre um imã, cada pequeno fragmento de ferro se
magnetiza por indução e funciona como uma minúscula agulha imantada (bússola), indicando
a direção do campo, de modo que materializamos assim as linhas de força magnéticas,
conforme a figura a seguir.

6.2 Força e Campo Magnéticos

Em nosso estudo de eletricidade, descrevemos as interações entre objetos carregados em
termos de campos elétricos, que rodeiam qualquer carga elétrica. Além de conter o campo
elétrico, a região do espaço ao redor de qualquer carga em movimento contém um campo
magnético.

A força magnética que atua numa carga puntiforme devido a algum campo magnético
~

B, tem as seguintes propriedades:

• a intensidade da força é proporcional à carga q e a intensidade da velocidade v da
partícula.

• quando ~v e ~

B tem direções paralelas, a força magnética é nula.

• quando ~v e ~

B tem direções que fazem um ângulo ✓ 6= 0 entre si, a força magnética
tem a direção perpendicular às direções de ~v e ~

B e seu módulo proporcional a sen ✓.

Podemos resumir essas propriedades escrevendo a força magnética na forma de um pro-
duto vetorial como sendo

~

F

B

= q~v ⇥ ~

B (6.1)
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A direção da força magnética ~

F

B

agindo numa partícula carregada movendo-se com
uma velocidade ~v na presença de um campo magnético ~

B é perpendicular a ambos ~v e ~

B,
conforme figura (a). Forças magnéticas de sentidos opostos são exercidas em cargas de sinais
opostos que se movem com a mesma velocidade num campo magnético, conforme figura (b),
onde as linhas tracejadas mostram os caminhos das partículas.

–

+

Como a força magnética é sempre perpendicular à velocidade da partícula, podemos
dizer que o campo magnético não realiza trabalho. Assim, a energia cinética de uma
partícula carregada num campo magnético constante permanece também constante.

Da equação para a força magnética, vemos que a unidade no SI do campo magnético é o
Newton por Coulomb-metro por segundo, que é denominada Tesla (T), sendo então

1 T ⌘ 1

N
C · m/s

,

e uma outra unidade muito comum é denominada Gauss (G), que é relacionado com o
Tesla através da conversão 1 T = 10

4 G. O campo magnético da Terra é ⇠ 0.6 G.
Para facilitar as ilustrações, vamos definir uma pequena notação para indicar a direção

de ~

B quando este está perpendicular ao plano do papel, usaremos � quando este aponta
saindo da página e ⌦ quando este aponta entrando na página.

Exemplo 6.1. Força Resultante na Partícula

Consideremos uma fonte de partículas puntiformes de carga elétrica q e com velocida-
des ~v na direção x. As partículas passam por uma fenda e chegam na região onde existem
simultaneamente um campo magnético uniforme ~

B = �Bẑ e um campo elétrico uniforme
~

E = �Eŷ, conforme a figura (a).
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Algumas dessas partículas passam por essa região sem defletir, ou seja, permanecem
em movimento com a velocidade constante. Para que isso ocorra, sabemos que a força
resultante sobre a mesma deve ser nula, conforme figura (b), de modo que

X
~

F = q

~

E + q~v ⇥ ~

B = 0,

que corresponde a ~

E = �~v ⇥ ~

B, e como a velocidade da partícula está na direção x,
podemos escrever

�Eŷ = �(vx̂)⇥ (�Bẑ),

sendo necessário que a partícula tenha velocidade cujo módulo é

v =

E

B

Assim, a força resultante sobre uma partícula puntiforme em movimento na
presença de campos elétrico e magnético é dada pela força de Lorentz, que
corresponde a equação

~

F

L

= q

~

E + q~v ⇥ ~

B

onde q é a carga elétrica e ~v é a velocidade da partícula.

Obs.: Esse equipamento é conhecido como seletor de velocidades, pois permite
filtrar as partículas que tenham somente a velocidade dada por v = E/B.

6.3 Força Magnética numa Corrente

Sabemos que uma força magnética é exercida numa única partícula quando esta se move
através de um campo magnético. Então, não deveria ser surpresa que um fio carregado
também deva experimentar uma força quando colocado na presença de um campo magnético,
pois uma corrente elétrica nada mais é do que uma coleção de cargas em movimento.

Vamos quantificar esse efeito considerando um segmento infinitesimal de fio com com-
primento dl e seção transversal de área A, carregando uma corrente I na presença de um
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campo magnético aproximadamente uniforme ~

B, conforme figura.

+

◊ ◊ ◊ ◊ ◊

◊ ◊ ◊ ◊ ◊

◊

◊

A força magnética exercida numa carga q movendo-se com velocidade de arrasto ~v

A

é
q~v

A

⇥ ~

B. A força magnética atuando no fio é devido a todas as cargas em movimento em
seu interior que são nA dl, lembrando que n é o número de cargas por volume. Assim, a
força magnética nesse segmento do fio de comprimento dl é

d

~

F

B

= (q~v

A

⇥ ~

B)nA dl

que pode ser escrita de maneira mais conveniente se usarmos o fato que I = nqv

A

A, portanto

d

~

F

B

= I d

~

l⇥ ~

B

onde d~l é o vetor que aponta na direção da corrente I e tem magnitude igual ao comprimento
dl do segmento.

A força total que age sobre o fio todo, conforme
figura, pode ser integrada sobre o comprimento do
fio

~

F

B

= I

Z
B

A

d

~

l⇥ ~

B (6.2)

onde A e B representam as extremidades do fio.
Quando realizamos essa integração, a magnitude
do campo magnético e sua direção com o vetor d

~

l

pode variar para pontos diferentes.
Consideremos agora um fio suspenso verticalmente entre os pólos de um magneto, con-

forme figura (a).
Nas figuras (b), (c) e (d) temos o aparato apresentado na parte (a) como visto do pólo

norte do magneto, tal que o campo magnético (cruzes azuis) tem direção entrando na página.
Quando não há corrente passando pelo fio, este permanece na vertical, conforme figura (b).
Quando há uma corrente vertical ascendente, o fio deflete para a esquerda, conforme figura
(c). Quando a corrente é descendente, o fio deflete para a direita, conforme figura (d).

Portanto, o sentido da corrente determina o sentido da força magnética, uma vez que
trocar I ! �I resulta em levar ~

F

B

! �~

F

B

.
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Exemplo 6.2. Força num Fio Curvado

Consideremos um fio curvado que carrega uma corrente I e está localizada num campo
magnético uniforme ~

B, conforme a figura.
Como o campo é uniforme, podemos tirar ~

B da
integral, e obtemos

~

F

B

= I

✓Z
B

A

d

~

l

◆
⇥ ~

B

Mas a quantidade
R

B

A

d

~

l representa a soma veto-
rial de todos os elementos de linha de A até B.
Pela lei da adição vetorial, a soma é igual a ~

L

0
,

dirigido de A para B. Portanto, reduzimos nosso
resultado a

~

F

B

= I

~

L

0
⇥ ~

B

Assim, a força magnética num fio curvado carregando uma corrente num
campo magnético uniforme é igual aquela de um fio reto conectando os pontos
finais e carregando a mesma corrente.

Exemplo 6.3. Força num Loop de Fio

Consideremos um fio na forma de um loop fechado que carrega uma corrente I e está
localizada num campo magnético uniforme ~

B, conforme a figura.
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Novamente como o campo é uniforme, podemos
tirar ~

B da integral, e obtemos

~

F

B

= I

✓I
d

~

l

◆
⇥ ~

B

Como o conjunto de elementos representa um po-
lígono fechado, a soma vetorial de todos os ele-
mentos deve ser zero. Isso segue do procedimento
da adição de vetores pelo método gráfico. SendoH

d

~

l = 0, concluímos que

~

F

B

= 0

Assim, a força magnética total agindo em qualquer loop fechado de fio car-
regando uma corrente num campo magnético uniforme é zero.

Consideremos um circuito retangular de lados a e b percorrido por uma corrente esta-
cionária I e situado num campo magnético uniforme ~

B, que supomos paralelo ao lado a,
conforme figura (a).

◊

Como os lados 1 e 3 são paralelos a ~

B, a força
magnética sobre ambos é zero. Usando o sistema
de coordenadas da figura, a força ~

F 2 sobre o lado
2 é

~

F 2 = (Ibẑ)⇥ (Bŷ) = �IBbx̂,

igual e contrária à força ~

F 4 sobre o lado 4, o que
corresponde a um binário de torque, conforme fi-
gura (b).

~⌧ = (aŷ)⇥ (�IBbx̂) = IBAẑ

onde A = ab é a área do circuito e definimos

~µ = IAx̂ = IAn̂ ⌘ I

~

A

como o momento de dipolo magnético da es-
pira, onde ~

A = An̂ é a sua área orientada (visto
da extremidade de n̂, o circuito é percorrido em
sentido anti-horário).

Sendo assim, o torque magnético sobre uma espira com momento de dipolo magnético ~µ
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num campo magnético uniforme ~

B é dado facilmente via

~⌧ = ~µ⇥ ~

B

A posição de equilíbrio corresponde a ~µ//

~

B, ou seja, o circuito tende a se orientar
perpendicularmente ao campo magnético. É devido a esse fato que uma bússola se orienta
na presença do campo magnético terrestre, o momento de dipolo magnético da bússola se
alinha ao campo magnético da Terra!

6.4 Movimento de Cargas num Campo Magnético Uni-

forme

Vimos que a força magnética agindo numa partícula carregada em movimento num campo
magnético é perpendicular à velocidade da partícula e consequentemente o trabalho feito pela
força magnética sobre essa partícula é nulo.

Consideremos o caso especial de uma partícula com carga positiva que se move num
campo magnético uniforme com sua velocidade inicial perpendicular ao campo. Conforme
a partícula muda a direção da sua velocidade devido à força magnética, a força magnética
permanece perpendicular à velocidade. E como a força é sempre perpendicular à velocidade,
a trajetória da partícula é um círculo! A figura a seguir mostra a partícula se movendo num
círculo num plano perpendicular ao campo magnético.

+

+

+

◊ ◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

◊

◊ ◊ ◊ ◊

◊ ◊ ◊ ◊

A partícula se move num círculo porque a força
magnética ~

F

B

é perpendicular a ~v e ~

B e tem uma
intensidade constante qvB, e tem orientação anti-
horária para uma carga positiva. Sendo assim, a
força centrípeta é igual a força magnética

X
F = ma

cp

F

B

= qvB =

mv

2

R

R =

mv

qB

Assim, o raio da trajetória é proporcional ao momentum linear mv da partícula e inver-
samente proporcional a intensidade da carga q dela e à intensidade do campo magnético B.
A velocidade angular da partícula é
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! =

v

R

=

qB

m

Esse resultado mostra que a velocidade angular da partícula e o período da órbita circular
não dependem da velocidade linear da mesma ou do raio da órbita. A velocidade angular !
é algumas vezes denominada de frequência cíclotron pois partículas carregadas circulam
com essa frequência angular num tipo de acelerador chamado de cíclotron.

Exemplo 6.4. Trajetória Helicoidal

Consideremos um campo magnético uniforme na direção z dado por ~

B = Bẑ, conforme
a figura.

+

A força magnética sobre uma partícula de carga
q e velocidade arbitrária ~v é dada por

~

F

B

= q~v ⇥ ~

B = qvB(v̂ ⇥ ẑ)

onde v̂ representa a direção do vetor velocidade ~v
da partícula, e por consequência (v̂⇥ ẑ) é sempre
uma direção perpendicular a z.

Desta forma, não há nenhuma componente da força magnética ao longo da direção z,
e consequentemente a aceleração é a

z

= 0, de modo que a componente z da velocidade
permanece constante, v

z

= v0z.

Contudo, a força magnética tem componentes x e y que causam mudanças nas com-
ponentes v

x

e v

y

no tempo, de modo que a projeção da trajetória nesse plano xy é um
círculo, cujo raio é

R =

mv?

qB

,

onde v? =

p
v

2
x

+ v

2
y

é a componente da velocidade que é perpendicular ao campo mag-
nético. As projeções em xz e yz são senóides!

Assim, se a partícula carregada se move num campo magnético uniforme
com sua velocidade em alguma direção arbitrária com respeito à direção do
campo, sua trajetória é uma hélice com o eixo paralelo ao campo magnético.
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