
Capítulo 3

Potencial Eletrostático

Nesse capítulo, estudaremos o potencial eletrostático criado por cargas puntiformes e
distribuições de cargas, bem como diferenças de potenciais entre pontos.

3.1 Força Elétrica como Força Conservativa

Uma das propriedades mais interessantes da Lei de Coulomb é o fato da força eletrostática
entre cargas elétricas ser uma força conservativa, que obedece a condiçãoI
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é o trabalho da força elétrica entre quaisquer dois pontos A e B deve ser o mesmo para
qualquer caminho que escolhamos entre esses dois pontos.

Assim como no caso das forças gravitacional e elétrica, que são forças conservativas,
podemos associar à força elétrica uma diferença de energia potencial eletrostática, W (el)
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3.2 Diferença de Potencial e Potencial Eletrostático

Para um deslocamento infinitesimal d

~

l de uma carga, o trabalho realizado pela força
elétrica numa carga é ~

F

el

· d~l = q0
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E · d~l, sendo q0 a carga teste que experimenta o campo
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elétrico ~

E criado por alguma distribuição fonte de carga. Como essa quantidade de trabalho é
feita pelo campo, a energia potencial do sistema carga-campo é mudada por uma quantidade
dU = �q0

~

E ·d~l. E para um deslocamento finito entre os pontos A e B, a mudança na energia
potencial �U = U

B

� U

A
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e a integração é feita ao longo do caminho que a carga q0 segue de A para B. Como a força
q0
~

E é conservativa, essa integral de linha não depende do caminho que ligue A a B.
Dividindo a energia potencial pela carga teste obtemos uma quantidade física que depende

somente da distribuição fonte de cargas, essa quantidade é denominada potencial eletrostático
V . Assim, a diferença de potencial �V = V

B
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A

entre dois pontos A e B num campo
elétrico é definida como a mudança de energia potencial do sistema quando uma carga teste
é deslocada entre os pontos dividida pela carga teste q0
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A unidade de potencial eletrostático no S.I é o Volt, V ⌘ C/m. Como o campo elétrico
se relaciona com o potencial, é comum utilizarmos como unidade de campo V/m, além de
N/C.

Exemplo 3.1. Diferença de Potencial num Campo Elétrico Uniforme
Vamos determinar a diferença de potencial (d.d.p.) entre os pontos A e B sujeitos

a um campo elétrico uniforme ~

E e a variação da energia potencial necessária para levar
uma carga q de um ponto a outro, conforme figura.
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O campo elétrico nessa região é ~

E = �Eŷ, de
modo que o produto escalar ~

E · d~l = E dy, e
nesse caso temos
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Assim, o potencial em B deve ser menor do que o
potencial em A pois a diferença de potencial é ne-
gativa entre os pontos. Isso significa que o campo
elétrico aponta no sentido em que há decréscimo
do potencial.

�V = �Ed

A variação da energia potencial eletrostática é dada por �U = q�V , então

�U = �qEd.

O que nos informa que a energia potencial do sistema diminui fazendo com que a ener-
gia cinética da partícula aumentasse �K = ��U , uma vez que não há forças dissipativas
durante a trajetória.

3.3 Potencial de Cargas Puntiformes

Agora que sabemos determinar a diferença de potencial entre dois pontos do espaço,
podemos o potencial eletrostático num ponto específico do espaço localizado a uma distância
r de uma carga puntiforme. Para isso, começaremos com a expressão geral
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onde A e B são os dois pontos arbitrários conforme a figura. Em qualquer ponto do espaço,
o campo elétrico de uma carga puntiforme é ~

E = kqr̂/r

2, onde r̂ é um vetor unitário dirigido
da carga para o ponto. A quantidade ~

E · d~l pode ser expressa como
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q
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O produto escalar r̂·d~l = dl cos ✓, onde ✓ é o ângulo
entre r̂ e d

~

l. Além disso, dl cos ✓ é a projeção de
d

~

l em r̂, então, dl cos ✓ = dr. Isto é, qualquer
deslocamento d
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l ao longo do caminho de A para
B produz uma mudança dr na magnitude de r̂, o
vetor posição do ponto com relação a carga fonte
do campo. Fazendo essa substituição, encontramos
que ~
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Essa equação nos mostra que a diferença de potencial entre quaisquer dois pontos A e B

num campo criado por uma carga puntiforme depende somente das coordenadas radiais r
A

e
r

B

, ou seja, independente do caminho escolhido de A para B, como discutido anteriormente.
Uma vez estabelecido uma referência para o potencial no ponto A, qualquer ponto B

terá seu potencial definido univocamente, isto é, o valor de V

B

depende do valor de V

A

. É
comum escolhermos a referência do potencial elétrico, no caso de uma carga puntiforme,
sendo V = 0 em r

A

= 1. Com essa escolha de referência, o potencial elétrico criado por
uma carga puntiforme em qualquer ponto a uma distância r da carga é

V (r) = k

q

r

, (3.5)

de modo que, o potencial eletrostático depende apenas da posição V = V (x, y, z), ou seja, o
potencial é um campo escalar.

Para um conjunto de duas ou mais cargas puntiformes, o potencial eletrostático total
pode ser obtido pelo princípio da superposição, isto é, o potencial total num determinado
ponto do espaço devido ao conjunto de cargas é a soma dos potenciais devido a cada carga
independentemente naquele ponto. Assim, para um conjunto de cargas, o potencial eletros-
tático total é
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3.4 Gradiente do Potencial e Equipotenciais

Uma vez que conhecemos o potencial de uma dada configuração de cargas, será que
conseguiremos inferir algo sobre o campo elétrico? De fato, sabemos que a diferença de
potencial entre dois pontos infinitesimalmente próximos é dada pela própria definição do
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potencial

dV = �~

E · d~l,

sendo assim, o campo elétrico é proporcional ao gradiente do potencial ~rV e de fato
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Isto é, a componente x do campo elétrico é igual ao negativo da derivada do potencial
com respeito a x. Processo similar pode ser feito para as componentes y e z. Esse fato é a
afirmação matemática que o campo elétrico é uma medida da taxa de variação do potencial
com a posição.

Vamos agora imaginar um caminho d

~

l que seja perpendicular ao campo elétrico ~

E. A
diferença de potencial nesse caminho é dV = �~

E ·d~l = 0, ou seja, a diferença de potencial é
nula quando caminhamos sobre uma superfície que é perpendicular ao campo elétrico. Essas
superfícies recebem o nome de equipotenciais, pelo fato de terem o mesmo potencial em todos
seus pontos.

+

Na figura acima vemos equipotenciais (linhas tracejadas) e linhas de campo (linhas cheias)
para (a) um campo elétrico uniforme produzido por um plano infinito de carga, (b) uma
carga puntiforme, e (c) um dipolo elétrico. E em todos os casos, o campo elétrico é sempre

perpendicular às superfícies equipotenciais e tem sentido que aponta na direção do potencial

decrescente.

3.5 Potencial Devido a Distribuições Contínuas de Carga

Para distribuições contínuas de carga, podemos calcular o potencial eletrostático de duas
maneiras apresentadas a seguir.
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Se a distribuição de carga é conhecida, podemos
considerar o potencial devido a um pequeno ele-
mento de carga dq, tratando esse elemento como
uma carga puntiforme. O potencial eletrostático
dV em algum ponto P devido ao elemento de carga
dq é

dV = k

dq

r

onde r é a distância do elemento de carga ao ponto
P .

Para obter o potencial total no ponto P , integramos a equação acima para incluir con-
tribuições de todos elementos de carga da distribuição. Como cada elemento está, em geral,
a distâncias diferente do ponto P , podemos expressar

V = k

Z
dq

r

(3.8)

onde r depende do elemento de carga dq, e assumimos que o potencial é zero quando o ponto
P é infinitamente distante da distribuição de carga.

Se o campo elétrico já é conhecido por outras considerações, tais como Lei de Gauss,
podemos calcular o potencial elétrico devido à distribuição contínua de carga usando a
definição do potencial. Se a distribuição de carga tem simetria suficiente, primeiro calculamos
~

E em qualquer ponto usando a Lei de Gauss e então substituímos em �V = �
R
~

E ·d~l para
determinar a diferença de potencial entre quaisquer dois pontos. E por fim, escolhemos o
potencial V sendo zero em algum ponto conveniente do espaço.

Exemplo 3.2. Potencial devido a um Aro Uniformemente Carregado
Vamos determinar o potencial eletrostático em qualquer localizado num eixo central

perpendicular a um aro uniformemente carregado de raio R e carga total Q.
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Consideremos, como na figura, que o aro está ori-
entado tal que seu plano é perpendicular ao eixo
x e seu centro está na origem. Para analisar o
problema, consideraremos o ponto P estando a
uma distância x do centro do aro, conforme fi-
gura. O elemento de carga dq está a uma dis-
tância
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expressar V como
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Como cada elemento dq está a mesma distância do ponto P , podemos tirar
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e usando o fato que
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dq é a carga total do aro Q, temos
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A única variável nessa expressão para V é x, uma vez que nosso cálculo é válido
somente para pontos ao longo do eixo x. A partir desse resultado, o campo elétrico pode
ser determinado a partir do gradiente do potencial como
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Exemplo 3.3. Potencial devido a um Disco Uniformemente Carregado
Vamos determinar o potencial eletrostático em qualquer ponto localizado no eixo cen-

tral perpendicular a um disco uniformemente carregado de raio R e densidade superficial
de carga �.
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Novamente, escolhemos o ponto P no eixo x a
uma distância x do centro do disco. Simplifica-
mos o problema dividindo o disco num conjunto
de aros carregados de espessura infinitesimal dr.
O potencial devido a cada aro é dado pelo exem-
plo anterior. Consideremos um desses aros de raio
r e espessura dr, conforme figura. O elemento de
área dado pelo aro é dA = 2⇡r dr, de modo que
o elemento de carga será dq = �dA = �2⇡r dr.
Assim, o potencial no ponto P devido a esse aro
é
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2
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2
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�2⇡r drp
x

2
+ r

2

onde x é uma constante e r uma variável. Para encontrar o potencial total em P , somamos
sobre todos os aros formando o disco. Isto é, integramos dV de r = 0 a r = R
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Para um ponto qualquer fora do eixo do disco, o cálculo de V é muito difícil de realizar,

e não trataremos esses exemplos nesse curso.

Exercício 3.1. Mostre a partir do potencial calculado que o campo elétrico em qualquer
ponto P ao longo do eixo do disco será

~
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Exemplo 3.4. Potencial devido a uma Esfera Uniformemente Carregado
Vamos determinar o potencial eletrostático em qualquer região do espaço criado por

uma esfera uniformemente carregada de raio R e carga total Q.
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Comecemos pelos pontos no exterior da esfera,
isto é, r > R, tomando o potencial como zero em
r = 1. Nos capítulos anteriores, encontramos
que a intensidade do campo elétrico no exterior
de uma esfera uniformemente carregada de raio
R é

E(r > R) = k

Q

r

2

onde o campo é radial para fora quando Q é positivo. Nesse caso, para obter o potencial
num ponto exterior, tal como B na figura, usamos �V = �

R
B
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E · d~l, escolhendo o ponto
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e assim sabemos que o potencial na região exterior à esfera é dado por

V (r > R) = k

Q

r

Por continuidade em r = R, o potencial num ponto C na superfície da esfera deve ser
V

C

= kQ/R. Para um ponto no interior da esfera, vamos lembrar que o campo elétrico
no interior de uma esfera isolante uniformemente carregada é
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Q
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r

Podemos usar esse resultado para calcular a diferença de potencial V
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de modo que o potencial na região interior à esfera é dado por
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V (r) =
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k
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Podemos esboçar um gráfico do potencial V (r)

como função da distância r ao centro da esfera,
definindo V0 = 3kQ/(2R).

3.6 Potencial Devido a um Condutor Carregado

Vimos no capítulo anterior que quando um condutor sólido em equilíbrio está carregado,
sua carga reside na sua superfície, fato que os difere dos isolantes. Assim, o campo elétrico
próximo a superfície externa é perpendicular a mesma e dentro do condutor o campo é nulo.

Consideremos dois pontos A e B na superfície de um condutor carregado, conforme figura.
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+
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+++
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++ + + ++
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Usando um caminho ao longo da superfície que ligue os dois pontos, vemos que o campo ~

E

é sempre perpendicular ao deslocamento d

~

l, de modo que ~

E ·d~l = 0. Usando esse resultado,
vemos que
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E · d~l = 0

que vale para quaisquer dois pontos na superfície, portanto V é constante na superfície.
Assim, a superfície de um condutor carregado em equilíbrio eletrostático é uma superfície

equipotencial.

Exemplo 3.5. Potencial de uma Esfera Condutora
Consideremos uma esfera condutora de carga Q e de raio R, como mostra a figura (a).
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O campo elétrico obtido via Lei de Gauss é

E(r) =

8<:0 se r < R

k

Q

r

2 se r > R

O potencial pode então ser obtido via campo elé-
trico por integração, como no exemplo anterior,
de modo que

V (r) =

8<:k

Q

R

se r < R

k

Q

r

se r > R

Portanto, o potencial elétrico no interior da esfera
condutora é uniforme e de mesmo valor que o po-
tencial na superfície (figura (b)), uma vez que a
diferença de potencial entre a superfície e qual-
quer ponto no interior da esfera deve ser nula,
pois o campo no interior do condutor é também
nulo (figura (c)).

Concluímos então que o potencial eletrostático de um condutor carregado é constante em

qualquer ponto no interior do condutor e de mesmo valor que na superfície.

Exemplo 3.6. Poder das Pontas
Consideremos um condutor representado por duas esferas condutoras de raios R1 e R2

conectadas por um fio condutor, como mostra a figura.

Como as esferas estão conectadas por fio condu-
tor, elas devem ambas terem o mesmo potencial

V = k

Q1

R1
= k

Q2

R2

Assim, a razão entre suas cargas é

Q1

Q2
=

R1

R2

Porém, a razão entre suas densidades superficiais de cargas deve então ser

�1

�2
=

R2

R1
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