Capitulo 3
Potencial Eletrostatico

Nesse capitulo, estudaremos o potencial eletrostatico criado por cargas puntiformes e

distribuicoes de cargas, bem como diferencas de potenciais entre pontos.

3.1 Forca Elétrica como Forca Conservativa

Uma das propriedades mais interessantes da Lei de Coulomb ¢ o fato da forga eletrostatica

entre cargas elétricas ser uma forca conservativa, que obedece a condigao

%ﬁel'dl—’:O,

sendo dl um elemento diferencial de deslocamento, denotado por Al = dzd + dyy + dzz no
sistema de coordenadas cartesiano. Lembremos que essa integral representa o trabalho feito

pela forca elétrica sobre uma carga ao longo de qualquer caminho fechado, de modo que

B
Wg‘i)B:/A Fo-dl (3.1)

é o trabalho da forga elétrica entre quaisquer dois pontos A e B deve ser o mesmo para
qualquer caminho que escolhamos entre esses dois pontos.

Assim como no caso das forgas gravitacional e elétrica, que sao forgas conservativas,
podemos associar a forca elétrica uma diferenca de energia potencial eletrostética, Wfl_z 5=

—(U ](36 h_ Uifl)), sendo escrita na forma integral

B
Ul — 'l = - / Fo-dl (3.2)
A

3.2 Diferenca de Potencial e Potencial Eletrostatico

Para um deslocamento infinitesimal dl’ de uma carga, o trabalho realizado pela forca

elétrica numa carga ¢é ﬁel Al = qOE . dl_: sendo g a carga teste que experimenta o campo

31



32 CAPITULO 3. POTENCIAL ELETROSTATICO

elétrico E criado por alguma distribuicao fonte de carga. Como essa quantidade de trabalho é
feita pelo campo, a energia potencial do sistema carga-campo ¢ mudada por uma quantidade
dU = —qOE" dlL E para um deslocamento finito entre os pontos A e B, a mudanga na energia

potencial AU = Ug — Uy do sistema, é

B
AU = —qo/ E.dl (3.3)
A

e a integracao é feita ao longo do caminho que a carga ¢y segue de A para B. Como a forca
QOE é conservativa, essa integral de linha nao depende do caminho que ligue A a B.
Dividindo a energia potencial pela carga teste obtemos uma quantidade fisica que depende
somente da distribui¢ao fonte de cargas, essa quantidade é denominada potencial eletrostético
V. Assim, a diferenca de potencial AV = Vz — V), entre dois pontos A e B num campo
elétrico ¢ definida como a mudanca de energia potencial do sistema quando uma carga teste

¢ deslocada entre os pontos dividida pela carga teste g

B
AV:—/ E.dl (3.4)
A

A unidade de potencial eletrostatico no S.I & o Volt, V.= C/m. Como o campo elétrico

se relaciona com o potencial, ¢ comum utilizarmos como unidade de campo V/m, além de

N/C.

Exemplo 3.1. Diferenca de Potencial num Campo Elétrico Uniforme
Vamos determinar a diferenga de potencial (d.d.p.) entre os pontos A e B sujeitos
a um campo elétrico uniforme Eca variagao da energia potencial necesséaria para levar

uma carga ¢ de um ponto a outro, conforme figura.
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O campo elétrico nessa regiao é E = —Fy, de
modo que o produto escalar E.-dl = Edy, e

nesse caso temos

il
Sk

B_‘ . B
VB—VA:—/ E-dl:—/ Edy = —Ed.
A A

Assim, o potencial em B deve ser menor do que o

potencial em A pois a diferenca de potencial é ne-
gativa entre os pontos. Isso significa que o campo
E elétrico aponta no sentido em que ha decréscimo

do potencial.

AV = —FEd

A variagao da energia potencial eletrostatica é dada por AU = qAV, entao

AU = —qEd.

O que nos informa que a energia potencial do sistema diminui fazendo com que a ener-
gia cinética da particula aumentasse AK = —AU, uma vez que nao ha forcas dissipativas

durante a trajetoria.

3.3 Potencial de Cargas Puntiformes

Agora que sabemos determinar a diferenca de potencial entre dois pontos do espaco,
podemos o potencial eletrostatico num ponto especifico do espaco localizado a uma distancia

r de uma carga puntiforme. Para isso, comegaremos com a expressao geral

B
VB—VA:—/ E -dl

A
onde A e B sao os dois pontos arbitrarios conforme a figura. Em qualquer ponto do espaco,
o campo elétrico de uma carga puntiforme é E = kq?/r?, onde # é um vetor unitério dirigido

da carga para o ponto. A quantidade E.-dl pode ser expressa como

E.-dl=kLs.ar

r2
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O produto escalar 7-dl’ = di cos f, onde 6 é o angulo
entre 7 e dl. Além disso, dlcosf é a projegao de
dl em 7, entao, dlcosf = dr. Isto é, qualquer
deslocamento dl ao longo do caminho de A para
B produz uma mudanga dr na magnitude de 7, o
vetor posicao do ponto com relacao a carga fonte
do campo. Fazendo essa substituicao, encontramos
que E - dl = (kq/r?)dr, e assim, a expressao para

a diferenca de potencial se torna

rBd 1TB
VB—VA:—kq/ r:qu —p L 4

2
TA r

Essa equacao nos mostra que a diferenca de potencial entre quaisquer dois pontos A e B
num campo criado por uma carga puntiforme depende somente das coordenadas radiais 74 e
rB, ou seja, independente do caminho escolhido de A para B, como discutido anteriormente.

Uma vez estabelecido uma referéncia para o potencial no ponto A, qualquer ponto B
tera seu potencial definido univocamente, isto é, o valor de Vi depende do valor de V4. E
comum escolhermos a referéncia do potencial elétrico, no caso de uma carga puntiforme,
sendo V = 0 em r4 = oo. Com essa escolha de referéncia, o potencial elétrico criado por

uma carga puntiforme em qualquer ponto a uma distancia r da carga é

Vir) = l{:g (3.5)

de modo que, o potencial eletrostatico depende apenas da posicao V =V (z,y, z), ou seja, o
potencial ¢ um campo escalar.

Para um conjunto de duas ou mais cargas puntiformes, o potencial eletrostéatico total
pode ser obtido pelo principio da superposicao, isto é, o potencial total num determinado
ponto do espaco devido ao conjunto de cargas é a soma dos potenciais devido a cada carga
independentemente naquele ponto. Assim, para um conjunto de cargas, o potencial eletros-

tatico total é
q;
Vir) = vV, = k=, 3.6
"= vi=3k (36)

3.4 Gradiente do Potencial e Equipotenciais

Uma vez que conhecemos o potencial de uma dada configuracao de cargas, serd que
conseguiremos inferir algo sobre o campo elétrico? De fato, sabemos que a diferenca de

potencial entre dois pontos infinitesimalmente proximos é dada pela propria definicao do
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potencial

AV =—E -dl,
sendo assim, o campo elétrico é proporcional ao gradiente do potencial VV e de fato

- ov, ov._. oV,

o gy Wy OV, OV |
\4% o 83/y 5, (3.7)

Isto é, a componente x do campo elétrico é igual ao negativo da derivada do potencial
com respeito a x. Processo similar pode ser feito para as componentes y e z. Esse fato ¢ a
afirmacao matemaética que o campo elétrico é uma medida da taxa de variacao do potencial
com a posicao.

Vamos agora imaginar um caminho al’ que seja perpendicular ao campo elétrico E. A
diferenca de potencial nesse caminho é dV = —_E-dl'= 0, ou seja, a diferenca de potencial é
nula quando caminhamos sobre uma superficie que é perpendicular ao campo elétrico. Essas
superficies recebem o nome de equipotenciais, pelo fato de terem o mesmo potencial em todos

seus pontos.

E

(a)

Na figura acima vemos equipotenciais (linhas tracejadas) e linhas de campo (linhas cheias)
para (a) um campo elétrico uniforme produzido por um plano infinito de carga, (b) uma
carga puntiforme, e (¢) um dipolo elétrico. E em todos os casos, o campo elétrico é sempre
perpendicular as superficies equipotenciais e tem sentido que aponta na direcao do potencial

decrescente.

3.5 Potencial Devido a Distribuicoes Continuas de Carga

Para distribuicoes continuas de carga, podemos calcular o potencial eletrostéatico de duas

maneiras apresentadas a seguir.
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Se a distribui¢ao de carga é conhecida, podemos
considerar o potencial devido a um pequeno ele-

mento de carga dg, tratando esse elemento como

/,dq uma carga puntiforme. O potencial eletrostético
ﬁﬂ dV em algum ponto P devido ao elemento de carga
/// dg é
/ av — 14
,
P onde r ¢ a distancia do elemento de carga ao ponto

P.

Para obter o potencial total no ponto P, integramos a equag¢ao acima para incluir con-
tribuigoes de todos elementos de carga da distribuicao. Como cada elemento esta, em geral,
a distancias diferente do ponto P, podemos expressar

dg

vk [ (3.8)

onde 7 depende do elemento de carga dq, e assumimos que o potencial é zero quando o ponto
P ¢ infinitamente distante da distribui¢ao de carga.

Se o campo elétrico ja é conhecido por outras consideragoes, tais como Lei de Gauss,
podemos calcular o potencial elétrico devido a distribuicao continua de carga usando a
definicao do potencial. Se a distribuicao de carga tem simetria suficiente, primeiro calculamos
E em qualquer ponto usando a Lei de Gauss e entao substituimos em AV = — [ E-dl para
determinar a diferenca de potencial entre quaisquer dois pontos. E por fim, escolhemos o

potencial V' sendo zero em algum ponto conveniente do espaco.

Exemplo 3.2. Potencial devido a um Aro Uniformemente Carregado
Vamos determinar o potencial eletrostatico em qualquer localizado num eixo central

perpendicular a um aro uniformemente carregado de raio R e carga total Q.
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Consideremos, como na figura, que o aro esta ori-
entado tal que seu plano é perpendicular ao eixo
x e seu centro estd na origem. Para analisar o
problema, consideraremos o ponto P estando a
uma distancia x do centro do aro, conforme fi-
gura. O elemento de carga dq estd a uma dis-
tancia V22 + R? do ponto P. Assim, podemos

expressar V' como

dgq / dg
V =k — =k —_—.
/axer r aro V 2+ R?

Como cada elemento dq estéa a mesma distancia do ponto P, podemos tirar v/ x2 + R?

da integral, e V' se reduz a

1
V:k—/ dg.
\/$2+R2 aro 1

e usando o fato que fam dg é a carga total do aro @), temos

Q
VP

A tnica varidavel nessa expressao para V é x, uma vez que nosso calculo é vélido

V(P) =k

somente para pontos ao longo do eixo x. A partir desse resultado, o campo elétrico pode

ser determinado a partir do gradiente do potencial como

o _ dVA_ d o 2\—1/2
E=-VV = &= szdx(x + R?)

)z? + R2)73/2(2:c)

— —kQ(—

entao

= Qx .
E(P) =kay gryn®

Exemplo 3.3. Potencial devido a um Disco Uniformemente Carregado
Vamos determinar o potencial eletrostatico em qualquer ponto localizado no eixo cen-
tral perpendicular a um disco uniformemente carregado de raio R e densidade superficial

de carga o.
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Novamente, escolhemos o ponto P no eixo z a
uma distancia x do centro do disco. Simplifica-
mos o problema dividindo o disco num conjunto
de aros carregados de espessura infinitesimal dr.
O potencial devido a cada aro é dado pelo exem-
plo anterior. Consideremos um desses aros de raio
r e espessura dr, conforme figura. O elemento de

area dado pelo aro é dA = 27rdr, de modo que

o elemento de carga serd dg = odA = o2nrdr.
Assim, o potencial no ponto P devido a esse aro

é

dq o2nrdr

dV =k =k

onde x é uma constante e r uma variavel. Para encontrar o potencial total em P, somamos

sobre todos os aros formando o disco. Isto é, integramos dV der=0ar =R

V= | T ko [ (@4 ) RAG)
= TKO = TTRO T r r
0o Vax?+r? 0

e assim
V(P) = 2rko [(2* + R2)12 z]

Para um ponto qualquer fora do eixo do disco, o calculo de V' é muito dificil de realizar,

e nao trataremos esses exemplos nesse curso.

Exercicio 3.1. Mostre a partir do potencial calculado que o campo elétrico em qualquer

ponto P ao longo do eixo do disco sera

Exemplo 3.4. Potencial devido a uma Esfera Uniformemente Carregado
Vamos determinar o potencial eletrostatico em qualquer regiao do espago criado por

uma esfera uniformemente carregada de raio R e carga total Q.
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Comecemos pelos pontos no exterior da esfera,

isto é, r > R, tomando o potencial como zero em

r = oco. Nos capitulos anteriores, encontramos

B que a intensidade do campo elétrico no exterior

C de uma esfera uniformemente carregada de raio
Reé

Q
B(r>R) =k

onde o campo é radial para fora quando () é positivo. Nesse caso, para obter o potencial
num ponto exterior, tal como B na figura, usamos AV = — f o\ dl escolhendo o ponto

A como r = 0o

= "Bdr 1 1
e e
raA ra B

vB_osz[__o}

B

e assim sabemos que o potencial na regiao exterior a esfera é dado por

V(r>R)= g

Por continuidade em r = R, o potencial num ponto C' na superficie da esfera deve ser
Vo = kQ/R. Para um ponto no interior da esfera, vamos lembrar que o campo elétrico
no interior de uma esfera isolante uniformemente carregada é
Q
E(r<R)= kﬁr
Podemos usar esse resultado para calcular a diferenga de potencial Vp — Vi em algum

ponto interior D

T

Vp — Ve = —/ E(r)dr = —k% rdr
ro R

Q_,Q 2

VD k’R 2R3(R T')

de modo que o potencial na regiao interior a esfera é dado por

Q (. 1
V(T<R)—kﬁ (3—§)
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v
ki<3—ﬁ> kQ<3—T—Z) ser < R
V() 2R R? V(T’) _ 2R R
k‘% ser >R
%VO ________ Podemos esbogar um grafico do potencial V(r)

como funcao da distancia r ao centro da esfera,
definindo Vj = 3kQ/(2R).

7 ;
3.6 Potencial Devido a um Condutor Carregado

Vimos no capitulo anterior que quando um condutor sélido em equilibrio esté carregado,
sua carga reside na sua superficie, fato que os difere dos isolantes. Assim, o campo elétrico
proximo a superficie externa é perpendicular a mesma e dentro do condutor o campo ¢ nulo.

Consideremos dois pontos A e B na superficie de um condutor carregado, conforme figura.

4 x
—
* x
— +0B
— +o—
x *
/ .\
E

Usando um caminho ao longo da superficie que ligue os dois pontos, vemos que o campo E
é sempre perpendicular ao deslocamento dl_: de modo que E -dl'= 0. Usando esse resultado,

vemos que

B
VB—VA:—/ E-di =0
A

que vale para quaisquer dois pontos na superficie, portanto V' é constante na superficie.
Assim, a superficie de um condutor carregado em equilibrio eletrostdtico € uma superficie

equipotencial.

Exemplo 3.5. Potencial de uma Esfera Condutora

Consideremos uma esfera condutora de carga @) e de raio R, como mostra a figura (a).
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O campo elétrico obtido via Lei de Gauss é

S 0 ser <R
' B =3
(a) |+ R + ks ser>R
&, +/,/+/’ O potencial pode entao ser obtido via campo elé-

trico por integragao, como no exemplo anterior,

de modo que

Q
kzﬁ ser < R

V(r)=
k’% ser > R

Portanto, o potencial elétrico no interior da esfera

condutora é uniforme e de mesmo valor que o po-

=
oyl
)

tencial na superficie (figura (b)), uma vez que a
(c) diferenga de potencial entre a superficie e qual-

quer ponto no interior da esfera deve ser nula,

=y

pois o campo no interior do condutor é também

nulo (figura (c)).

Concluimos entao que o potencial eletrostdtico de um condutor carregado € constante em

qualquer ponto no interior do condutor e de mesmo valor que na superficie.

Exemplo 3.6. Poder das Pontas
Consideremos um condutor representado por duas esferas condutoras de raios R; e Ry

conectadas por um fio condutor, como mostra a figura.

Como as esferas estao conectadas por fio condu-

-~ ]7«\ tor, elas devem ambas terem o mesmo potencial
1

@ \ V= k% — Q2
" 4 Ry Ry

Assim, a razao entre suas cargas é
@ Q1 R
Q2| Q2 Iy
"7
Porém, a razao entre suas densidades superficiais de cargas deve entao ser

01 Ry

) Ry
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